Machine Learning

Reference:

Dr.B.Santhosh Kumar,

Hands-On Machine Learning with Scikit- :
Associate Professor,

Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems CSE Department,

by GPREC, Kurnool

Geron Aurelien

Fundamentals of Machine Learning

* Machine Learning is the science of programming
computers so they can learn from data.

* Machine Learning is the field of study that gives
computers the ability to learn without being
explicitly programmed.

* A computer program is said to learn from
experience E with respect to some task T and
some performance measure P, if its performance
on T, as measured by P improves with
experience E.

Example

e Spam filter is a Machine Learning program that can
learn to flag spam given examples of spam emails (e.g.,
flagged by users) and examples of regular (nonspam,
also called “ham”) emails.

e The examples that the system uses to learn are called
the training set. Each training example is called a training
instance (or sample).

* In this case, the task T is to flag spam for new emails,
the experience E is the training data, and the
pberformance measure P needs to be defined; for example,
you can use the ratio of correctly classified emails.

e This particular performance measure is called
accuracy and it is often used in classification tasks.

° If you just download a copy of Wikipedia, your
computer has a lot more data, but it is not suddenly
better at any task. Thus, it is not Machine Learning.

The traditional approach

Launch!

Study the
problem

i_,

A

Write rules

Analyze

errors

Use of Machine Learning

Y
Study the : Train. ML Evalgate
problem algorithm solution
A ©
Analyze <

errors

Automatic Adaptation

Update Launch!
, / data

Can be automated

Train ML
algorithm

Evaluate
solution

Machine Learning helps Humans Learn

Study the Train ML Q

problem a algorithm =
T A Solution
| , l
|
|
L]
: T.:Q ’0.: .:go
| = Inspect the
: *Lots* of data solution
|
|
|
|
|

lterate if needed | --- Understand the
problem better

Types of Machine Learning Systems

Machine Learning systems can be classified according to the
amount and type of supervision they get during
training(supervised, unsupervised, semi supervised, and
Reinforcement Learning)

Whether or not they can learn incrementally on the fly
(online versus batch learning)

Whether they work by simply comparing new data points to
known data points, or instead detect patterns in the training
data and build a predictive model, much like scientists do
(instance-based versus model-based learning)

Supervised learning

Training set

PR om ©

Instance
L)Y
m New instance

Examples: k-Nearest Neighbors, Linear Regression, Logistic
Regression, Support Vector Machines (SVMs) , Decision Trees and
Random Forests, Neural networks2

Unsupervised learning

Data is unlabeled
Training set

8 g aa

S fa

a

Examples: Clustering -- k-Means, Hierarchical Cluster Analysis
(HCA), Visualization and dimensionality reduction -- Principal
Component Analysis (PCA), Anomaly detection, Association rule
learning -- Apriori

* A related task is dimensionadlity reduction, in which
the goal is to simplify the data without losing too
much information.

* One way to do this is to merge several
correlated features into one. For example, a car’s
mileage may be very correlated with its age.

* So the dimensionality reduction algorithm will
merge them into one feature that represents
the car’s wear and tear. This is called feature
extraction.

Semi supervised learning

Partially labeled training data i.e. usually a lot of unlabeled
data and a little bit of labeled data.

Feature 2
A O ® o O O
° .A ® .A.O ‘oo.. ® ® ..
O ® c® © o e O :
.A ® e o e ®°o° e o o
e _® oo °e® ©
®e % .o'. % .
) ® eX<——Class? L ° o o
o o
Y e . e .o .o.o . O .
o0 © o %0 o0® o ® o o ®

Feature 1

Reinforcement Learning

/Environment

0 Observe

Select action
using policy

e Action!

Get reward
or penalty

Update policy
(learning step)

Iterate until an

G optimal policy is
found

Batch Learning

In batch learning, the system is incapable of learning
incrementally: it must be trained using all the available data

This will generally take a lot of time and computing
resources, so it is typically done offline.

First the system is trained, and then it is launched into
production and runs without learning anymore; it just
applies what it has learned. This is called offline learning.

If you want a batch learning system to know about new
data you need to train a new version of the system from
scratch on the full dataset (not just the new data, but also
the old data), then stop the old system and replace it with
the new one.

online learning

Mo <=L] -]

New data (on the fly)

Train ML
algorithm

Online Learning with lots of data

o, o

o %W
Lots of data

Study the
problem

|

i
Chop into
pieces

y

Launch!

Train online
ML algorithm

Analyze

Evaluate
solution

errors

Feature 2
A
/\
AN

Instance Based Learning

/\
A A

New instance

A\
A\

Training instances

/\

>
Feature 1

Model Based Learning

A A AaY

\

New instance \

_A A A p

e e o e e mm

B
Feature 1

Life satisfaction

Table 1-1. Does money make people happier?

Country GDP per capita (USD) Life satisfaction

Hungary 12,240 49
Korea 27,195 5.8
France 37,675 6.5
Australia 50,962 1.3
United 5tates 55,805 1.2
10 . . T
o *s e |
L ®
6 . . o ” " 1
- % e % s sce :
L
4t \ us. A
Australia
France
21 Korea 7
Hungary

|:|]]]
0 10000 20000 30000 40000 50000 600000
GDP per capita

life_satisfaction = 6 + 8, x GDP_per_capita

10 . | |
f}“ f— :"'l

fy=—5x10"

By =5x10" 0y =0 _
2L ty=2x10"

-

[:| L L
0 10000 20000 30000 40000 50000 60000
GDP per capita

Life satisfaction

Life satisfaction

=48
h=4.91%10

|:] I | I | |
0 10000 20000 30000 40000 50000 60OOO
GDP per capita

import matplotlib

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

| import sklearn

Load the data
oecd bli = pd.read_csv(“oecd bli_2015.csv", thousands=",")

' gdp_per_capita = pd.read_csv("gdp_per_capita.csv",thousands=",' ,delimiter="\t",

encoding="'latinl’', na_values="n/a")

Prepare the datao

country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
X = np.c_[country_stats["GDP per capita"]]

y = np.c_[country_stats["Life satisfaction"]]

Visualize the data
country_stats.plot(kind="scatter', x="GDP per capita”, y='Life satisfaction')
plt.show()

Select a linear model
1in_reg_model = sklearn.linear_model.LinearRegression()

Train the model
1in_reg _model.fit(X, v)

Make a prediction for Cyprus
X_new = [[22587]] # Cyprus' GDP per capita
print(lin_reg_model.predict(X_new)) # outputs [[5.96242338]] ., ar

21

* Instance-based learning algorithm : Slovenia has the closest GDP
per capita to that of Cyprus ($20,732), and since the OECD’ life
satisfaction is 5.7, you would have predicted a life satisfaction of
5.7 for Cyprus.

* If you look at the two next closest countries, you will find
Portugal and Spain with life satisfactions of 5. and 6.5,
respectively. Averaging these three values, you get 5.77, which is
pretty close to your model-based prediction. This simple

algorithm is called k-Nearest Neighbors regression (in this example,
k =3).

* Replacing the Linear Regression model with k-Nearest
Neighbors regression in the previous code is as simple as
replacing this line:
clf = sklearn.linear _model.LinearRegression()
with this one:

clf= sklearn.neighbors.KNeighborsRegressor(n_neighbors=3)

Challenges

* Insufficient Quantity of Training Data
* Non representative Training Data

* Poor-Quality Data

* Irrelevant Features

» Overfitting the Training Data

* Underfitting the Training Data

Insufficient Quantity of Training Data

* It takes a lot of data for most Machine Learning
algorithms to work properly.

* Even for very simple problems you typically need
thousands of examples, and for complex problems
such as image or speech recognition you may need

millions of examples (unless you can reuse parts of
an existing model).

Life satisfaction

Non Representative Training Data

10 | . . —
Brazil Mexico Chlle ~ CzechRepublic e
Norway Switzerland ~ Luxembourg
]
0 | | | | |
0 20000 40000 60000 80000 100000

GDP per capita

* It is crucial to use a training set that is representative
of the cases you want to generalize to.

¢ If the sample is too small, you will have sampling noise
i.e., honrepresentative data.

* Even very large samples can be non representative if
the sampling method is flawed. This is called sampling
bias.

Poor Quality Data

 If some instances are clearly outliers, it may help to
simply discard them or try to fix the errors manually.

¢ If some instances are missing a few features (e.g., 5%
of your customers did not specify their age)

* you must decide whether you want to ignore this
attribute altogether, ignore these instances, fill in the
missing values (e.g., with the median age), or train one
model with the feature and one model without it, and
SO on.

Irrelevant Features

* A critical part of the success of a Machine Learning
project is coming up with a good set of features to
train on. This process is called feature engineering.

* Feature selection: selecting the most useful features to
train on among existing features.

* Feature extraction: combining existing features to
produce a more useful one.

* Creating new features by gathering new data.

Overfitting the Training Data

 Overfitting: The model performs well on the training
data, but it does not generalize well.

10 . . .
- i
g v
¢
U
.
© 4}
n
Q
3 2f
0 | l | I |
0 20000 40000 60000 80000 100000

GDP per capita

Overfitting happens when the model is too complex relative to the
amount and noisiness of the training data. The possible solutions
are:

+ To simplify the model by selecting one with fewer parameters

(e.g., a linear model rather than a high-degree polynomial
model), by reducing the number of attributes in the training
data or by constraining the model

+ To gather more training data

+ To reduce the noise in the training data (e.g., fix data errors
and remove outliers)

Dr.B.Santhosh Kumar

30

» Constraining a model to make it simpler and reduce
the risk of overfitting is called regularization.

c
e
o
V)
©
Y
0
4
®
$ - - Linear model on all data
H_I: v PR IR Linear model on partial data
— Regularized linear model on partial data
O \ | \ | |
0 20000 40000 60000 80000 100000

GDP per capita

The amount of regularization to apply during learning can be
controlled by a hyperparameter. A hyperparameter is a
parameter of a learning algorithm (not of the model)

Underfitting the Training Data

» Undefrfitting is the opposite of overfitting: it occurs when
your model is too simple to learn the underlying
structure of the data.

* The main options to fix this problem are:

* Selecting a more powerful model, with more
parameters

* Feeding better features to the learning algorithm
(feature engineering)

Testing and Validating

» Split data in to two sets: Training set and test set.
* Error rate on new cases is called generalization error.

¢ If the training error is low but the generalization error
is high, it means that your model is overfitting the
training data.

* Cross validation — Split training set in to
complementary subsets

* model is trained against a different combination of
these subsets and validated against the remaining
parts.

Cross Validation

Dr.B.Santhosh Kumar

34

End-to-End Machine Learning Project

 |.Look at the big picture.
Frame the problem
Select the Performance Measure
* 2. Get the data.
3. Discover and visualize the data to gain insights.

* 4. Prepare the data for Machine Learning
algorithms.

* 5.Select a model and train it.

¢ 6. Fine-tune your model.

» /. Present your solution.

» 8. Launch, monitor, and maintain your system.

Look at the Big Picture

a2

@) Population

o) Y

o
oz

Latitude

w
o

3}

e
L

WY 22 2120 110 T116 14
Longitude

$500k

3452k

=

$403k

$355k

$306k

15258k

13209

Median House Value

{$160k

$112k

$63k

$15k

Figure 2-1. California housing prices

Dr.B.Santhosh Kumar

36

Working with Real data

e Popular data repositories:

UC Irvine Machine Learning Repository
Kaggle datasets
Amazon’s AWS datasets

* Meta portals (they list open data repositories):
http://dataportals.org/
http:/lopendatamonitor.eu/
http://quandl.com/

o Other pages listing many popular open data repositories:
Wikipedia’s list of Machine Learning datasets
Quora.com question
Datasets subreddit

Machine Learning Pipeline for Real
Estate Investments

Your component Other signals

4{&.
Upstream District Investment
components Pricing analysis

District Data District Prices Investments

Frame the Problem

* A sequence of data processing components is
called a data pipeline

¢ First, you need to frame the problem: is it

supervised, unsupervised, or Reinforcement
Learning?

e Is it a classification task, a regression task, or
something else?

e Should you use batch learning or online
learning techniques!?

Select a Performance Measure

* A typical performance measure for regression

problems is the Root Mean Square Error
(RMSE).

.)2
RMSE = |} i — vi)
T

\&

U1, Y2, ..., U, are predicted values

Y1,Ya2, . ..,Y, are observed values

n 1s the number of observations

MNIST

ﬁrnm sklearn.datasets import fetch openml
mnist = fetch opennl('mnist 784", version=l, cache=False)
print mnist

{"COL_NAMES': ['label', 'data'],
'DESCR': 'mldata.org dataset: mnist-original’,
'data': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],

[0, 0,0, ..., 0,0, 0],
ey
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0,0, ... 0, 0]], dtype=uint8),
'target': array([0., 0., 0., ..., 9., 9., 9.])}

1

VPN FNIO NN
AONAIFI VI NN
O—R™M T | -9 N% O
ONT O b o
O—\M¥>P0NS oo
Q- A\t 0o o~
Q=Y \S Ndg N
O~ NI WY r~oee N
0~ < HLI N0
RQNETM>HL O~

Datasets loaded by Scikit-Learn generally have a similar dictionary structure includ-

Ing:
« A DESCR key describing the dataset

« A data key containing an array with one row per instance and one column per
feature

+ A target key containing an array with the labels

Let’s look at these arrays:

>>> X, v = mnist["data"], mnist["target"]
>>> X.shape

(70000, 784)

>>> y.shape

(70000,)

There are 70,000 images, and each image has 784 features. This is because each image
is 28x28 pixels, and each feature simply represents one pixels intensity, from 0
(white) to 255 (black). Let's take a peek at one digit from the dataset. All you need to
do is grab an instance’s feature vector, reshape it to a 28x28 array, and display it using
Matplotlib’s imshow() function:

¥matplotlib inline
import matplotlib
import matplotlib.pyplot as plt

some_digit = X[26000]
some_digit_image = some_digit.reshape(28, 28)

plt.imshow(some_digit_image, cmap = matplotlib.cm.binary,
interpolation="nearest")

plt.axis("off")

plt.show()

X train, X test, y train, y test = X[:60000], X[60000:], y[:60000], y[60000:]

inport numpy as np

shuffle index = np.random.permutation(0000)
X_train, y train = X_train[shuffle index], y train[shuffle index]

Training a Binary Classifier

v _train_ 5 = (y_train == 5)
v _test 5 = (yv_test == 5)

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X _train, y_train_5)

>>> sqd _clf.predict([some digit])
array([True], dtype=bool)

Performance Measures

Measuring Accuracy Using Cross-Validation
Confusion Matrix
Precision and Recall

Precision/Recall Tradeott
The ROC Curve

Split 1
Split 2
Split 3
Split4

Split 5

All Data

Training data

Test data

Fold1 || Fold2 || Fold3 | Fold4 | Fold5
Fold1 || Fold2 || Fold3 | Fold4 | Fold5
Fold 1 Fold 2 Fold 3 Fold 4 | Fold 5
Fold1 || Fold2 || Fold3 | Fold4 || Folds
Fold1l || Fold2 | Fold3 || Fold4 || Fold5
Fold 1 Fold 2 Fold 3 Fold4 || Fold5

> Finding Parameters

Final evaluation S

Test data

Accuracy - Accuracy is the ratio of correctly predicted
observation to the total observations.

>>> from sklearn.model selection import cross_val score
>>> cross_val score(sqd clf, X train, y_train 5, cv=3, scoring="accuracy")
array([0.9502 , 0.96565, 0.96495])

from sklearn.base import BaseEstimator

class Never5Classifier(BaseEstimator):
def fit(self, X, y=None):
pass
def predict(self, X):
return np.zeros((len(X), 1), dtype=bool)

Can you guess this model’s accuracy? Let’s find out:

>>> never_5_clf = Never5Classifier()
>>> cross_val_score(never 5 clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([6.909 , 0.90715, 0.9128])

Confusion Matrix

from sklearn.model selection import cross_val predict

y_train_pred = cross_val predict(sqd clf, X _train, y train 5, cv=3)

Now Get The Confusion Matrix

>>> from sklearn.metrics import confusion_matrix
>>> confusion_matrix(y train_5, y_train_pred)
array([[53272, 1307],

[1077, 4344]])

Predicted Predicted

0 1

Actual

* Each row in a confusion matrix represents an actual
class, while each column represents a predicted class.

* The first row of this matrix considers non-5 images
(the negative class): 53,272 of them were correctly
classified as non-5s (they are called true negatives), while
the remaining 1,307 were wrongly classified as 5s (false
positives).

* The second row considers the images of 5s (the
positive class): 1,077 were wrongly classified as non-5s
(false negatives), while the remaining 4,344 were correctly
classified as 5s (true positives).

array([[53272, 13071,
| 1077, 4344]])

e A perfect classifier would have only true positives
and true negatives, so its confusion matrix would
have nonzero values only on its main diagonal(top
left to bottom right):

array([[54579 , 0],
[O, 54211])

PRECISION and RECALL

* An interesting one to look at is the accuracy of
the positive predictions, this is called the precision
of the classifier.

[P
[P+FP

precision =

TP is the number of true positives, and FP is the number of false positives.

PRECISION and RECALL

» precision is typically used along with another metric
named recall, also called sensitivity or true positive rate

(TPR):
 This is the ratio of positive instances that are correctly
detected by the classifier.

IP
I'P+FEN

recall =

FN is of course the number of false negatives.

Predicted
@ Negative Positive

& 7
w3 d at

Precision
(6.9, 3outof 4)

- 5 + l655
D

Recall
(e.g., 3 out of)

Precision and Recall

Scikit-Learn provides several functions to compute classifier metrics, including preci-
sion and recall

>>> from sklearn.metrics import precision_score, recall score

>>> precision score(y train S, y pred) == 4344 / (4344 + 1307)
0.76871350203503808

>>> recall score(y train 5, y train_pred) # == 4344 / (4344 + 1077)
0.79136650647482011

array([[53272, 1307],
[1077, 4344]])

"

» It is often convenient to combine precision and recall
into a single metric called the F, score.

 The F, score is the harmonic mean of precision and recall
Whereas the regular mean treats all values equally, the
harmonic mean gives much more weight to low
values.

* As a result, the classifier will only get a high F, score if
both recall and precision are high.

) precision X recall [P
F = = 2 ¥ — = :
L 1 precision +recall - | FN+FP

— T
precision recall)

To compute the F, score, simply call the f1_score() function:

>>> from sklearn.metrics import f1 score
>>> f1 score(y_train_5, y_pred)
0.78468208092485547

e The F, score favors classifiers that have similar precision and
recall. This is not always what you want: in some contexts you
mostly care about precision, and in other contexts you really
care about recall.

e Suppose Yyou train a classifier to detect shoplifters on
surveillance images: it is probably fine if your classifier has only
30% precision as long as it has 99% recall.

» Unfortunately, you can’t have it both ways: increasing precision

reduces recall, and vice versa. This is called the precision/recall
tradeoff.

* Accuracy - Accuracy is the ratio of correctly
predicted observation to the total observations.

* Precision - Precision is the ratio of correctly
predicted positive observations to the total predicted
positive observations.

* Recall - Recall is the ratio of correctly predicted
positive observations to the all observations in actual
class.

* F, score - F, Score is the weighted average of
Precision and Recall.

Precision/Recall Tradeoff

Precision: 6/8=73% 45=80% 3/3=100%
Recall. 6/6=100% 4/6=67% 3/6=250%

o |
§+3952576 59595
Y Y
Negative predictions 'F * 7 Positive predictions

— —)

P Score

Various thresholds

Figure 3-3. Decision threshold and precision/recall tradeoff

 Scikit-Learn does not let you set the threshold directly,
but it does give you access to the decision scores that it

uses to make predictions.

¢ Instead of calling the classifier’s predict() method, you
can call its decision_function() method, which returns a

score for each instance, and then make predictions
based on those scores using any threshold you want:

 y_scores= sgd_clf.decision_function([some_digit])

y_scores
array([161855.74572176])

threshold = 0
y_some_digit_pred = (y_scores > threshold)

array([True], dtype=bool)

e The SGDClassifier uses a threshold equal to 0O, so the
previous code returns the same result as the predict()
method (i.e., True). Let’s raise the threshold:

» threshold = 200000
y_some_digit_pred = (y_scores > threshold)
y_some_digit_pred
array([False], dtype=bool)

* This confirms that raising the threshold decreases recall.
The image actually represents a 5, and the classifier
detects it when the threshold is 0, but it misses it when
the threshold is increased to 200,000.

* So how can you decide which threshold to
use?

» For this you will first need to get the scores of
all instances in the training set using the
cross_val_predict() function again.

e But this time specifying that you want it to
return decision scores instead of predictions:
y_scores = cross_val predict(sgd clf, X train,
y_train_5, cv=3,method="decision_function")

* Now with these scores you can compute
precision and recall for all possible thresholds

» using the precision_recall curve() function:

fron tmport precision recall curve

prectsions, recalls, thresholds = precision recall curve(y train 5, y scores)

- def plot_precision_recall vs_threshold(precisions, recalls, thresholds):
~ plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "a-", label="Recall")
plt.xlabel("Threshold")

plt. legend(loc="upper left")

plt.ylin([0, 1])

plot precision_recall vs_threshold(precisions, recalls, thresholds)
plt. show()

1.0

0.8

0.6

0.4

0.2

| -~ Precision

— Recall

—600000 =400000 =200000 0 200000 400000 600000
Threshold

Figure 3-4. Precision and recall versus the decision threshold

1.0

0.8

0.6

Precision

0.2

0.4

0.0 0.2 0.4

Recall

0.6

0.8

1.0

Fioure 3-5. Precision versus recall

y train_pred 90 = (y scores > 70000)

Let's check these predictions’ precision and recall:

>>> precision_score(y_train_5, y_train_pred_90)
0.8998702983138781
>>> recall_score(y_train_5, y_train_pred_90)

0.63991883416343853

The ROC Curve

The receiver operating characteristic (ROC) curve is another common tool
used with binary classifiers.

It is very similar to the precision/recall curve, but instead of plotting
precision versus recall, the ROC curve plots the true positive rate
(another name for recall) against the false positive rate.

The FPR is the ratio of negative instances that are incorrectly classified as
positive. It is equal to one minus the true negative rate, which is the
ratio of negative instances that are correctly classified as negative.

FPR = FP/FP+TN

The TNR is also called specificity. Hence the ROC curve plots sensitivity
(recall) versus | — specificity.

TNR =TN/TN+FP

To plot the ROC curve, you first need to compute the TPR and FPR for various thres-
- hold values, using the roc_curve() function:

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

Then you can plot the FPR against the TPR using Matplotlib. This code produces the
plot in Figure 3-6:

def plot_roc_curve(fpr, tpr, label=None):
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plut([@, 1]1 [G! 1]1 ‘k"')
plt.axis([6, 1, 0, 1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')

plot_roc_curve(fpr, tpr)
plt.show()

True Positive Rate

1.0

0.8}

0.6

0.4

0.2}

U'%.

04 0.6
False Positive Rate

0.8

1.0

- One way to compare classifiers is to measure the area under the curve (AUC). A per-
fect classifier will have a ROC AUC equal to 1, whereas a purely random classifier will
have a ROC AUC equal to 0.5. Scikit-Learn provides a function to compute the ROC
AUC:

> from sklearn.metrics import roc_auc score

»> roc_auc_score(y_train 5, y scores)
0.97061072797174941

Multiclass Classification

Binary classifiers distinguish between two classes, multiclass
classifiers (also called multinomial classifiers) can distinguish
between more than two classes.

One way to create a system that can classify the digit images
into 10 classes (from 0 to 9) is to train 10 binary classifiers, one
for each digit (a O-detector, a |-detector, a 2-detector; and so
on).

Then when you want to classify an image, you get the decision
score from each classifier for that image and you select the
class whose classifier outputs the highest score.

This is called the one-versus-all (OvA) strategy (also called
one-versus-the-rest).

Another strategy Is to train a binary classifier for every pair
of digits: one to distinguish Os and 1s, another to distinguish
Os and 2s, another for 1s and 2s, and so on.

This is called the one-versus-one (OvO) strategy. If there are
N classes, you need to train N x (N — 1) / 2 classifiers. For
the MNIST problem, this means training 45 binary
classifiers.

When you want to classify an image, you have to run the
Image through all 45 classifiers and see which class wins the
most duels.

The main advantage of OvO Is that each classifier only
needs to be trained on the part of the training set for the two
classes that it must distinguish.

Scikit-Learn detects when you try to use a binary classification
algorithm for a multiclass classification task, and it automatically
runs OVA (except for SVM classifiers for which it uses OvO).

Let’s try this with the SGDClassifier:
sgd_clf.fit(X_train, y_train)
sgd_clf.predict([some_digit])

array([5.])

This code trains the SGDClassifier on the training set using the
original target classes from 0 to 9 (y_train).

Then it makes a prediction (a correct one in this case). Under the
hood, Scikit-Learn actually trained 10 binary classifiers, got their
decision scores for the image, and selected the class with the
highest score.

» some_digit scores =
sgd clf.decision_function([some_digit])
print(some_digit_scores)

array([[-311402.62954431, -363517.28355739, -446449.5306454 ,
-183226.61023518, -414337.15339485, 161855.74572176,
-452576.39616343, -471957.14962573, -518542.33997148,
-536774.63961222]1)

The highest score is indeed the one corresponding to class 5:

>>> np.argmax(some_digit_scores)

5

>>> sgd_clf.classes_

array([6., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> sgd_clf.classes[5]

5.0

>>> from sklearn.multiclass import OneVsOneClassifier

>>> ovo_clf = OneVsOneClassifier(SCDClassifier(random_state=42))
>>> ovo_clf.fit(X_train, y_train)
>>> ovo_clf.predict([some digit])

array([5.])
>>> Len(ovo_clf.estimators_)

45
[raining a RandonForestClassifier is just as easy:

>>> forest_clf.fit(X_train, y _train)
>»> forest_clf.predict([some_digit])

array([5.])

»»> forest clf.predict proba([some digit])
array([[0.4, 0., 6., 0.1, 6., 0.8, 6., 0., 6., 0.]])

Error Analysis

>>»> y train_pred = cross val predict(sqd clf, X train scaled, y train, cv=3)
>>> conf_mx = confusion_matrix(y train, y_train_pred)

>>> conf _mx

array([[5725, 3, 24, 9, 10, 49, 50, 10, 39, 4],
|2, 6493, 43, 25, 7, 40, 5, 10, 109, 8],
|51, 41, 5321, 104, 89, 26, 87, 60, 166, 13],
47, 46, 141, 532, 1, 1, 40, SO, 141, 92],
19, 29, 41, 10,536, 9, 56, 37, @&, 189],
T3, 45, 36, 193, 64, 4582, 111, 30, 193, 94],
|29, 34, 44, 2, 42, @85, 527, 10, 45, 0],
25, 4, 14, 3, N4, 12, 6,587, 15, 23],
| 52, 161, 73, 1%, 10, 163, 61, 25, 5027, 123],
[43, 35, 26, 92, 178, 28, 2, 223, 82, 50]])

e

e

plt.matshow(conf_mx, cmap=plt.cm.gray)
plt.show()

* Focus the plot on errors

 First, you need to divide each value in the confusion matrix by
the number of images in the corresponding class

oW sums = conf mx.sun(axis=1, keepdims=True)
norm_conf mx = conf mx | row_suns

Now lets fill the diagonal with zeros to keep only the errors, and lefS plof the result

np. fiLL diagonal(norm conf mx, 0)
pLt.matshow(norm conf mx, cmap=plt.cm.qray)
Lt show()

cla, clb=3,°

X a3 = X train[(y train == cl a) & (y train pred == cl 3)]
X ab = X train[(y train == cl a) & (y train pred == cl b)]
X ba = X train[(y train == cl b) & (y train pred == cl a)]
X bb = X train[(y train == cl b) & (y train pred == cl b)]

plt.figqure(figsize=(5,8))
plt.subplot(221); plot digits(X aa[:25], images per row=5)
plt.subplot(222); plot digits(X ab[:25], inages per rows5)

plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=>5)

plt.show()
13338 3%352
58333 §19$%33
2383% %5387
33333 5{35%5
23354 85585
37585 65€5 8
5035395 $§56§55 5
JHO 85 5558
55353 5555%
SSFO05S 55855

Multilabel Classification

Until now each instance has always been assigned to just
one class. In some cases you may want your classifier to
output multiple classes for each instance.

For example, consider a face-recognition classifier: what
should it do if it recognizes several people on the same
picture! Of course it should attach one label per person it
recognizes.

Say the classifier has been trained to recognize three faces,
Alice, Bob, and Charlie; then when it is shown a picture of
Alice and Charlie, it should output [I, 0, 1] (meaning “Alice
yes, Bob no, Charlie yes”).

Such a classification system that outputs multiple binary
labels is called a multilabel classification system.

from sklearn.neighbors import KNeighborsClassifier

y train large = (y train >= 7)
y train odd = (y train % 2 == 1)
y multilabel = np.c_ [y train_large, y train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X _train, y multilabel)

>>> knn clf.predict([some digit])
array([[False, True]], dtype=bool)

Multioutput Classification

The last type of classification task we are going to discuss
here is called Multioutput-multiclass classification (or simply
multioutput classification).

It is simply a generalization of multilabel classification where
each label can be multiclass (i.e., it can have more than two
possible values).

To illustrate this, let’s build a system that removes noise
from images. It will take as input a noisy digit image, and it
will (hopefully) output a clean digit image, represented as an
array of pixel intensities, just like the MNIST images.

Notice that the classifier’s output is multilabel (one label per
pixel) and each label can have multiple values (pixel intensity
ranges from 0 to 255). It is thus an example of a Multioutput
classification system.

Lefs start by creating the training and est sets by taking the MNIST images and
- adding noise to ther pivelintensities using NumPy’ randint() function. The farge
images willbethe originalimages

notse = rnd.randint(2, 100, (len(X train), 784))

notse = rnd.randint(, 100, (len(X test), 784))
X_train mod = K train + notse
X test mod = X test + noise

y train pod = X tratn
y test mod = X test

knn_cLf.fit(X_train_mod, y_train_mod)

clean_digit = knn_clf.predict([X_test mod[some index]])
plot_digit(clean digit)

Training Models

Ways of training a Linear Regression Model:

Using a direct “closed-form” equation that directly computes
the model parameters that best fit the model to the training
set

Using an iterative optimization approach, called Gradient
Descent (GD), that gradually tweaks the model parameters to
minimize the cost function over the training set, eventually
converging to the same set of parameters as the first method.

Life satisfaction

Table 1-1. Does money make people happier?

Country GDP per capita (USD) Life satisfaction

Hungary 12,240 49
Korea 27,195 5.8
France 37,675 6.5
Australia 50,962 1.3
United 5tates 55,805 1.2
10 . . T
o *s e |
L ®
6 . . o ” " 1
- % e % s sce :
L
4t \ us. A
Australia
France
21 Korea 7
Hungary

|:|]]]
0 10000 20000 30000 40000 50000 600000
GDP per capita

life_satisfaction = 6 + 8, x GDP_per_capita

10 . | |
f}“ f— :"'l

fy=—5x10"

By =5x10" 0y =0 _
2L ty=2x10"

-

[:| L L
0 10000 20000 30000 40000 50000 60000
GDP per capita

Life satisfaction

Performance Measure

* A typical performance measure for regression

problems is the Root Mean Square Error
(RMSE).

.)2
RMSE = |} i — vi)
T

\&

U1, Y2, ..., U, are predicted values

Y1,Ya2, . ..,Y, are observed values

n 1s the number of observations

Life satisfaction

=48
h=4.91%10

|:] I | I | |
0 10000 20000 30000 40000 50000 60OOO
GDP per capita

Linear Regression

[n Chapter 1, we looked at a simple regression model of life satistaction: life_safisfac-
tion = 0, + 0, x GDP_per_capita.

Equation 4-1. Linear Regression model prediction

&

y = 9ﬂ+ Hlxl 4 92x2+ o 4 Hﬂxn

o jisthe predicted value.
« 11is the number of features.

o x is the i feature value.

» 0, is the | model parameter (including the bias term 6, and the feature weights

0,0y, 8,).

This can be written much more concisely using a vectorized form, as shown in Equa-
tion 4-2.

Equation 4-2. Linear Regression model prediction (vectorized form)

j=hix)=0"x

o 0 is the models parameter vector, containing the bias term 6, and the feature
weights 6, to 0,

» f"is the transpose of (a row vector instead of a column vector).
» Xis the instances feature vector, containing x, to x,, with x, always equal to 1.
o 0" xis the dot product of 6" and x.

» hyis the hypothesis function, using the model parameters .

The MSE of a Linear Regression hypothesis /1, on a training set X is calculated using
Equation 4-3.

Equation 4-3. MSE cost function for a Linear Regression model

X)< LT (ol 0)
MSE(X, 19)—Ef2(x0-0)

The Normal Equation
T

é‘:(xﬁx)_l*x -y

s

« 0 is the value of € that minimizes the cost function.

« y is the vector of target values containing y" to y™.

import numpy as np

X = 2 * np.random.rand(100, 1)
y =4+ 3 %X+ np.random.randn(100, 1)

X_b = np.c_[np.ones((160, 1)), X] # add x0 = 1 to each instance
theta best = np.linalg.inv(X_b.T.dot(X b)).dot(X b.T).dot(y)

>>> theta best
array([[4.21509616],
[2.77011339]])

Now you can make predictions using 6:

>>> X_new = np.array([[6], [2]])

>>> X_new b = np.c_[np.ones((2, 1)), X_new] # add x0 = 1 to each instance

>»> y_predict = X_new_b.dot(theta_best)

>>> y predict
array([[4.21509616],

[9.75532293]])

Lets plot this models predictions (Figure 4-2):

plt.plot(X_new, y predict, "r-")
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()

14+ — Predictions

12t

10}

Y3

0.0 0.5 1.0 15 2.0

The equivalent code using Scikit-Learn looks like this:’

>>> from sklearn.linear_model import LinearRegression
>>> lin_req = LinearRegression()
>>> 1in_reg.fit(X, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([4.21509616]), array([[2.77011339]]))
>>> 1in_reg.predict(X_new)
array([[4.21509616],
[9.75532293]])

Computational Complexity

The Normal Equation computes the inverse of XT - X,
which is an n X n matrix (where n is the number of

features).The computational complexity of inverting such a matrix
is typically about O(n3).

In other words, if you double the number of features, you
multiply the computation time by roughly to 23 = 8.

Gradient Descent

» Gradient Descent is a very generic optimization algorithm capable
of finding optimal solutions to a wide range of problems.

 The general idea of Gradient Descent is to tweak parameters
iteratively in order to minimize a cost function

» Concretely, you start by filling & with random values (this is called
random initialization), and then you improve it gradually, taking one
baby step at a time, each step attempting to decrease the cost
function (e.g., the MSE), until the algorithm converges to a minimum

0 |
o=t - ”UTJW“‘”I) (forj=0and j=1)

Cost

Learning step

|
|
|
|
|
|
|
|
|
|
|

Minimum

Random
initial value

D>

An important parameter in Gradient Descent is the size of the steps, determined by

the learning rate hyperparameter. If the learning rate is too small, then the algorithm

will have to go through many iterations to converge, which will take a long time (see
Figure 4-4).

Cost

A

Figure 4-4. Learning rate too small

On the other hand, if the learning rate is too high, you might jump across the valley
and end up on the other side, possibly even higher up than you were before. This
might make the algorithm diverge, with larger and larger values, failing to find a good
- solution (see Figure 4-5).

Cost

A

Start

Figure 4-5. Learning rate too large

difficult. Figure 4-6 shows the two main challenges with Gradient Descent: if the ran-
dom initialization starts the algorithm on the left, then it will converge to a local mini-
mum, which is not as good as the global minimum. If it starts on the right, then it will

take a very long time to cross the plateau, and if you stop too early you will never
reach the global minimum.

Cost

A

Plateau

Global > 8

Local minimum .
minimum

Figure 4-6. Gradient Descent pitfalls

Example

HOUSING DATA
House Size (X) House Price (Y)
1,100 1,99,000
1,400 2,45,000
1,425 3,19,000
1,550 2,40,000
1,600 3,12,000
1,700 2,79,000
1,700 3,10,000
1,875 3,08,000
2,350 4,05,000
2,450 3,24,000

Min-Max Standardization
X Y
(X-Min/Max-min) (¥-Min/Max-Min)
0.00 0.00
0.22 0.22
0.24 0.58
0.33 0.20
0.37 0.55
0.44 0.39
0.44 0.54
0.57 0.53
0.93 1.00

1.00 0.61

Step 1: Tofit aline Ypred = a + b X, start off with random values of a and b and calculate prediction

error (SSE)
a b X Y YP=a+bX §5E=1/2(Y-YP)A2

0.45 0.75 0.00 0.00 045 0.101
0.22 0.22 0.62 0.077
0.24 0.58 063 0.001
033 0.20 0.70 0.125
0.37 0.55 0.73 0.016
0.44 0.39 0.78 0.078
0.44 0.54 0.78 0.030
0.57 0.53 0.88 0.062
0.93 1.00 1.14 0.010
1.00 0.61 1.20 0.176

Total
SSE 0.677

Dr.B.Santhosh Kumar

109

Step 2: Calculate the error gradient w.r.t the weights

¢55E/da = - (Y-YP)

85SE/ab = - (Y-YP)X

Here, SSE=14 (Y-YP)? = 1(Y-(a+hX))?
You need to know a hit of calculus, but that's about it!!

dSSE/da and dSSE/db are the gradients and they give the direction of the movement of a,b w.r.t to SSE.

055€/0a 55E/db
. b X Y YP=ashX SSE sV-YP) = {¥-YPIX |

0.45 0.75 0.00 0.00 0.45 0.101 0.45 0.00
0.22 0.22 0.62 0.077 0.39 0.09

0.24 058 0.63 0.001 0.05 0.01

0.33 0.20 0.70 0.125 0.50 0.17

0.37 0.55 0.73 0.016 0.18 0.07

0.44 033 0.78 0.078 0.39 0.18

0.44 054 0.78 0.030 0.24 0.11

0.57 053 0.88 0.062 0.35 0.20

093 1.00 1.14 0.010 0.14 0.13

1.00 06l 1.20 0176 0.59 0.59

Total SSE 0.677 Sum 3.300 1.545

Dr.B.Santhosh Kumar

We need to update the random values of &, so that we move in the direction of optimal 3, b.

Update rules:

o 3-055E03
o 0-cSSE/ch

50, Update rules;

1, Newa=a-r*dSSE/da=045-0.01*3.300=042
2. Newb="h-r*aSSE/éb=0.75-0.01%*1.545=0.73

here, ris the learing rate = (.01, which is the pace of adjustment to the weights.

|
a
o
|
|
a
o
| /H’
/ i
I a
o
|
|
a

Step 4:lse new a and b for prediction and to calculate new Total SSE

g ; b N Y Peahl i i SE/sh
: 042 073 0.00 0.00 042 0.087 042 0.00
| 022 02 0.58 0.064 0.36 0.08

04 058 058 0.000 001 0.00
043 0.20 0.66 0.107 046 015
03/ 0.55 068 0.010 0.14 0,05
04 039 0N 0.063 0.36 016
(44 0.54 0.4 0.0 020 0.08
057 053 084 0,048 031 018
093 100 110 0.005 010 009
100 061 L15 0.148 05 0.54

fotal $S€ 0553 Sum 2900 1350

Dr.B.Santhosh Kumar 112

Batch Gradient Descent

Equation 4-5. Partial derivatives of the cost function

d@

MbE(Q ol Z ({—;'T

— D))

Equation 4-6. Gradient vector of the cost function

f

5‘
d

Vo MSE(6) = | 99,

d

| H

a0,

O MSE(6)

MSE(6)

MSE(6)

‘|

)

_— T+ - -
—m}{ (X-68-y)

Once you have the gradient vector, which points uphill, just go in the opposite direc-

tion to go downhill. This means subtracting V,MSE(6) from 6. This is where the

learning rate ; comes into play:* multiply the gradient vector by 7 to determine the
size of the downhill step (Equation 4-7).

Equation 4-7. Gradient Descent step

plext step) _ g _ 7, MSE(6)

Let's look at a quick implementation of this algorithm:

eta = 0.1 # learning rate
n_iterations = 1000
m= 100

theta = np.random.randn(2,1) # randem initialization
for iteration in range(n_iterations):

gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
theta = theta - eta * gradients

=>> theta
arrayv([[4.21509616] .
[2.770113392]1]1)

= = = = — = = = = = = — — =

i === = = = F— i e === = w= =

0 0 0
0.0 0.5 1.0 15 20 0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 15 2.0
I i I

= = =~ — = =

Figure 4-8. Gradient Descent with various learning rates

Stochastic Gradient Descent

* The main problem with Batch Gradient Descent is the
fact that it uses the whole training set to compute the
gradients at every step, which makes it very slow when
the training set is large.

» At the opposite extreme, Stochastic Gradient Descent just
picks a random instance in the training set at every step
and computes the gradients based only on that single
Instance.

* Obviously this makes the algorithm much faster since it
has very little data to manipulate at every iteration.

Cost

Figure 4-9. Stochastic Gradient Descent

Dr.B.Santhosh Kumar

117

When the cost function is very irregular this can actually help the
algorithm jump out of local minima, so Stochastic Gradient Descent has a
better chance of finding the global minimum than Batch Gradient Descent
does.

Therefore randomness is good to escape from local optima, but bad
because it means that the algorithm can never settle at the minimum. One
solution to this dilemma is to gradually reduce the learning rate. The steps
start out large (which helps make quick progress and escape local minima),
then get smaller and smaller, allowing the algorithm to settle at the global
minimum.

This process is called simulated annealing, because it resembles the process
of annealing in metallurgy where molten metal is slowly cooled down.

The function that determines the learning rate at each iteration is called
the learning schedule. If the learning rate is reduced too quickly, you may get
stuck in a local minimum, or even end up frozen halfway to the minimum. If
the learning rate is reduced too slowly, you may jump around the minimum
for a long time and end up with a suboptimal solution if you halt training
too early.

- This code implements Stochastic Gradient Descent using a simple learning schedule:

n_epochs = 50
t0, t1 =5, 50 # learning schedule hyperparameters

def learning_schedule(t):
return t0 / (t + t1)

theta = np.random.randn(2,1) # random initialization

for epoch in range(n_epochs):
for 1 in range(m):

random_index = np.random.randint(m)
x1 = X_b[random_index:random_index+1]
yi = y[random_index:random_index+1]
gradients = 2 * x1.T.dot(xi.dot(theta) - yi)
eta = learning_schedule(epoch * m + 1)
theta = theta - eta * gradients

>>> theta
array([[4.21076011],
[2.74856079]])

from sklearn.linear model import SCDRegressor
sqd_req = SGDRegressor(n_iter=50, penalty=None, etad=0.1)
sqd_req.fit(X, y.ravel())

Once again, you find a solution very close to the one returned by the Normal Equa-
tion:

>»> 5qd_reg.intercept_, sqd_reg.coef_
(array([4.18380366]), array([2.74205299]))

Mini-batch Gradient Descent

» At each step, instead of computing the gradients based on the
full training set (as in Batch GD) or based on just one instance
(as in Stochastic GD), Mini batch GD computes the gradients
on small random sets of instances called minibatches.

38l m—a Stochastic

3.6/ — Mini-batch
3.4|| e Batch

6}1 32+
3.0F

2.8

26

2.4

2.5 3.0 3.5 4.0 4.5

Figure 4-11. Gradient Descent paths in parameter space

Comparison

. Table 4-1. Comparison of algorithms for Linear Regression

Algoithm ~ Largem Qut-of-core support Largen Hyperparams Scaling required Scikit-Learn

Normal Equation Fast Mo Sow 0 No LinearRegression
Batch GD Slow Mo fast 2 Yes n/a

Algonthm ~ Largem Out-of-coresupport Largen Hyperparams Scaling required Scikit-Learn

StochasticGD ~ Fast Ve st 2] es SGDRegressor
Mini-batch 6D Fast Yes st) e N3

There is almost no ditference after training: all these algorithms
end up with very similar models and make predictions in exactly
the same way.

Polynomial Regression

» A simple way to do this is to add powers of each feature as
new features, then train a linear model on this extended set of
features. This technique is called Polynomial Regression.

m = 10C
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)

10

8 F e

6L . - .

y T
4L*" .) {
I-.' .‘ . - - -
2_ . .:.'- .. .- : :')
3 -2 -1 0 1 2 3
£

Figure 4-12. Generated nonlinear and noisy dataset

>>> from sklearn.preprocessing import PolynomialFeatures

>>> poly features = PolynomialFeatures(degree=2, include bias=False)
>>> X_poly = poly features.fit_transform(X)

>>> X[0]

array([-0.75275929])

>>> X_poly[0]

array([-0.75275929, 0.56664654])

>> |10 req = LinearRegression()

»»> 1in_reg. fit(X poly, y)

>»»» lin_reg. intercept_, 1in reg.coef_

(array([1.78134581]), array([[0.93366893, 0.56456263]]))

10 : : . .
— Predictions

Figure 4-13. Polynomial Regression model predictions

Not bad: the model estimates y = 0.56:{% +0.93x, + 1.78 when in fact the original

function was y = 0. S.x:f +1.0x; +2.0 + Gaussian noise.

Learning Curves

Dr.B.Santhosh Kumar 126

Learning Curves

from sklearn.metrics import mean_squared error
from sklearn.model selection import train test split

def plot_learning curves(model, X, y):
X_train, X val, y_train, y val = train_test split(X, y, test size=0.2)
train_errors, val_errors = [], []
for m in range(1, len(X_train)):
model.fit(X_train[:m], y_train[:m])
y_train_predict = model.predict(X_train[:n])
y val_predict = model.predict(X_val)
train_errors.append(mean_squared error(y_train predict, y train[:n]))
val_errors.append(mean_squared_error(y val_predict, y val))
plt.plot(np.sqrt(train errors), "r-+", linewidth=2, label="train")
plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val")

lin_reg = LinearRegression()
plot_learning_curves(lin_req, X, y)

3r0 I I I I I I
+ Training set

2.5} = Validation set |-

2.0+ .
0
E 1.5 '- T
[

1.0} .

0.5 -

00 [| |] | |

0 10 20 30 40 50 60 70 80
Training set size

Figure 4-15. Learning curves

- Now let’s look at the learning curves of a 108-degree polynomial model on the same
' data (Figure 4-16):

from sklearn.pipeline import Pipeline

polynomial_regression = Pipeline((
("poly features", PolynomialFeatures(degree=10, include bias=False)),
("sad reg", LinearRegression()),

)

plot_learning_curves(polynomial_regression, X, y)

- \falidation set

== Training set |

10

0

0 4 50 6070
Training set size

Al

Overfitting example

50 A

40 1

30 -

20+

10 1

_10 -

—20

T T T T T T T T
-2 =1 0 1 2 3 4 5

The green curve:

hy(x) = —x* + 7x* —5x% —31x+ 30

The red curve;

+x*+— -6

he () =

Regularized Linear Models

Ridge Regression
Lasso Regression
Elastic Net

Early Stopping

) .
fgj = lqj — ﬁ'm-](a{],al] (fUI' J = 0 &Ild J —])

Ridge Regression

Ridge Regression (also called Tikhonov regularization) is a regularized version of Lin-
ear Regression: a regularization term equal to a},|_ 9? is added to the cost function.

Equation 4-8. Ridge Regression cost function

F

J(8) = MSE(6) + aég‘,l 67
Note that the bias term 6} is not regularized (the sum starts af i = 1, not 0). If we
detine w as the vector of feature weights (6, to 6,), then the 1'egular1zat on term is
simply equal to Y2(| w [, where | - |, represents the ¢, norm of the weight vector.”
For Gradient Descent, just add aw to the MSE gradient vector (Equation 4-6),

Figure 4-17. Ridge Regression

Equation 4-9. Ridge Regression closed-form solution
A -1
6=(x""X+aa) X"y

m= 20
)4
¥

3 * np.random.rand(m, 1)

1+ 0.5*%X+ np.random.randn(m, 1) / 1.3

>>> from sklearn.linear_model import Ridge

>>> ridge_req = Ridge(alpha=1, solver="cholesky")
>>> ridge_req.fit(X, y)

>>> ridge _req.predict([[1.5]])

array([[1.55071465]])

And using Stochastic Gradient Descent:"*

>>> sgd_reg = SGDRegressor(penalty="12")
>>> sqd_reqg.fit(X, y.ravel())

>>> sgd_reg.predict([[1.5]])

array([[1.13500145]])

Lasso Regression

* Least Absolute Shrinkage and Selection Operator Regression
(simply called Lasso Regression) is another regularized version of
Linear Regression: just like Ridge Regression, it adds a
regularization term to the cost function

* It uses the {1 norm of the weight vector instead of half the
square of the £2 norm

Equation 4-10. Lasso Regression cost function

H
J(6) = MSE(6) +a), |6

=1

Here is a small Scikit-Learn example using the Lasso class. Note that you could
instead use an SGDRegressor (penalty="11").

>»> from sklearn.linear model import Lasso
>>> lasso_reg = Lasso(alpha=0.1)

>»> lasso_reg.fit(X, y)

>>> lasso_req.predict([[1.5]])

array([1.53788174])

Elastic Net

* Elastic Net is a middle ground between Ridge Regression and
Lasso Regression. The regularization term is a simple mix of
both Ridge and Lasso’s regularization terms, and you can

control the mix ratio r.

» When r = 0, Elastic Net is equivalent to Ridge Regression, and
when r = |, it is equivalent to Lasso Regression

Equation 4-12. Elastic Net cost function

Z

J(6) = MSE(0) + ra Z \H\+
i=1

Here is a short example using Scikit-Learn’s ElasticNet (11_ratio corresponds to
the mix ratio r):

>>> from sklearn.linear_model import ElasticNet

>>> elastic_net = ElasticNet(alpha=0.1, 11 ratio=0.5)
>>> elastic_net.fit(X, y)

>>> elastic_net.predict([[1.5]])

array([1.54333232])

Early Stopping

» A very different way to regularize iterative learning algorithms such
as Gradient Descent is to stop training as soon as the validation
error reaches a minimum. This is called early stopping.

4.0

- \/alidation set

3.3 - - Training set

3.0

2.5
Best model

RMSE

2.0

1.5}

1.0} - . .

--
-
-
el T T T

0.5

Figure 4-20. Early stopping regularization

Logistic Regression

* Logistic Regression (also called Logit Regression) is commonly used
to estimate the probability that an instance belongs to a
particular class (e.g., what is the probability that this email is
spam?)

* If the estimated probability is greater than 50%, then the
model predicts that the instance belongs to that class (called
the positive class, labeled “[”)

 Else it predicts that it does not (i.e., it belongs to the negative
class, labeled “0”’). This makes it a binary classifier.

Equation 4-13. Logistic Regression model estimated probability (vectorized form)

p=hyx)=0(8" %
The logistic—also called the logit, noted a(-)—is a sigmoid function (i.., S-shaped)
that outputs a number between 0 and 1. It is defined as shown in Equation 4-14 and
Figure 4-21.

Equation 4-14. Logistic function

1

o(t) = 1+ exp(—1)

1.0
0.8}

0.6}
0.4}
0.2}

0.0

=10 -5 0 5

10

Figure 4-21. Logistic function

Once the Logistic Regression model has estimated the probability p = f(x) that an
instance X belongs to the positive class, it can make its prediction easily (see Equa-
tion 4-15).

Equation 4-15. Logistic Regression model prediction
-0t p<o.s,
Lif p20.5.

Notice that o(f) < 0.5 when f < 0, and o{f) > 0.5 when f > 0, so a Logistic Regression
model predicts 1if 6" - x s positive, and 0 if it is negative,

Training and Cost Function

Equation 4-16. Cost function of a single training instance

«(6) - — log (ﬁ) it y=1,
—log(]—ﬁ) it y=0.

Equation 4-17. Logistic Regression cost function (log loss)
m

f(ﬂ) _ _L z [}’U)Eﬂg(ﬁ(l}) + (l —}’(I))fﬂg(l _ ﬁ{ﬂ”

m =

Iris Dataset

« Attribute
Information:

|. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:

-- Iris Setosa

-- Iris Versicolour

-- Iris Virginica

VCONOUAWN-S

10

| 25

A B C D
Sepal Length Sepal Width Petal Lengtl'c‘t:]Petal wWwidth
- 5.1 3.5 1.4 0.2

4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2

5 3.6 1.4 0.2

| 5.4 3.9 1.7 o.4a
4.6 3.4 1.4 0.3
5 3.4 1.5 0.2
4 .49 2.9 1.4 0.2
4.9 3.1 1.5 oO.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 3 1.4 O.1
4.3 3 1.4 oO.1
5.8 4 1.2 0.2
5.7 4.4 1.5 0.4
5.9 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.9 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 u 0.2
5.1 3.3 1.7 0.5

Iris Dataset

E
Class
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris—-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris—-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris—-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Decision Boundaries

. Lef’s try to build a classifier to detect the Iris-Virginica type based only on the petal
width feature. First let’s load the data:

>>> from sklearn import datasets

>>> iris = datasets.load iris()

>>> |ist(iris.keys())

['data', 'target_names', 'feature names', 'target', 'DESCR']

>»> X = iris["data"][:, 3:] # petal width

>>> y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else @

Now let’s train a Logistic Regression model:

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X, y)

Let’s look at the model’s estimated probabilities for flowers with petal widths varying

from 0 to 3 cm (Figure 4-23):

X_new = np.linspace(0, 3, 1000).reshape(-1, 1)

y_proba = log_reg.predict_proba(X_new)

plt.plot(X_new, y proba[:, 1], "g-", label="Iris-Virginica")
plt.plot(X_new, y proba[:, 0], "b--", label="Not Iris-Virginica")

________ .., :

=
)
I
I
7

o=
on

0| — Iris-Virginica <
Not Iris-Virginica '

=
'

Probability

A A K A A A A A A A A A

-~-

2.0

1.5
Petal width (cm)

0.5 1.0

Figure 4-23. Estimated probabilities and decision boundary

>>> log_req.predict([[1.7], [1.5]])
array([1, 0])

2.5}

N
o
T

Petal width
7=

1.0}

3.0 3.5 4.0 4.5 5.0 5.5 6.0 65 7.0
Petal length

Figure 4-24. Linear decision boundary

Softmax Regression

» The Logistic Regression model can be generalized to
support multiple classes directly, without having to train
and combine multiple binary classifiers.

e This is called Softmax Regression, or Multinomial Logistic
Regression.

* The idea is quite simple: when given an instance x, the
Softmax Regression model first computes a score
s, (x) for each class k, then estimates the probability of each
class by applying the softmax function (also called the
normalized exponential) to the scores.

* The equation to compute s, (x) should look familiar, as
it is just like the equation for Linear Regression
prediction .

Equation 4-19. Softmax score for class k

sp(x) = f:]kT . X

Note that each class has its own dedicated parameter vector 0, .All these vectors
are typically stored as rows in a parameter matrix O.

Once you have computed the score of every class for the instance x, you can

estimate the probability P, that the instance belongs to class k by running the scores
through the softmax function . It computes the exponential of every score, then
normalizes them (dividing by the sum of all the exponentials).

Equation 4-20. Softmax function
exp (Sk'[:}[))
K i
Li_qexp (s}.(x))

Pr=0(s(x)y =

K is the number of classes.

s(x) is a vector containing the scores of each class for the instance x.

o(s(x)) is the estimated probability that the instance x belongs to class k given
the scores of each class for that instance.

Just like the Logistic Regression classifier, the Softmax Regression classifier predicts
the class with the highest estimated probability (which is simply the class with the
highest score), as shown in Equation 4-21.

Equation 4-21. Softmax Regression classifier prediction

y = argmax o(s(x)); = argmax sk(x) = argmax (HkT-x)
k k k

o The argmax operator returns the value of a variable that maximizes a function. In
this equation, it returns the value of k that maximizes the estimated probability

0(S(x));

X = iris["data"][:, (2, 3)] # petal length, petal width
y = iris["target"]

softmax_reg = LogisticRegression(multi_class="multinomial",solver="1bfgs", C=10)
softmax_reqg.fit(X, y)

So the next time you find an iris with 5 cm long and 2 cm wide petals, you can ask
your model to tell you what type of iris it is, and it will answer Iris-Virginica (class 2)
with 94.2% probability (or Iris-Versicolor with 5.8% probability):

>>> softmax_req.predict([[5, 2]])

array([2])
>>> softmax_reg.predict_proba([[5, 2]])

array([[6.33134078e-07, 5.75276067e-02, 9.42471760e-01]])

3.0}
25
=
T oql|4 & Iris-Virginica
s m ® [ris-Versicolor
v | .
£ 13716 o Iris-Setosa
o
10t
o
0.3 ' il o
I'I 'il L]
0.0 ' '
0 1 2 3

Petal length

4 5 b 7

Figure 4-25. Softmax Regression decision boundaries

Dr.B.Santhosh Kumar

154

3.0f
25
S
T 9glld 2 Iris-Virginica
s m = |ris-Versicolor
G | .
= 130 o Iris-Setosa
o
10¢
o
0 ' li]
I.I ';l o
0.0 ' '
0 1 2 3
Petal length

4 5 b 7

Figure 4-25. Softmax Regression decision boundaries

Dr.B.Santhosh Kumar

155

Support Vector Machines

Linear SVM Classification:

You can think of an SVM classifier as fitting the widest possible
street (represented by the parallel dashed lines) between the
classes.This is called large margin classification.

2.0 . 20
B ® [ris-Versicolor I u

|
> o Iris-Setosa . ﬁ!l'
[N |

FPetal width

Petal length Petal length

Figure 5-1. Large margin classification

Soft Margin Classification

* If we strictly impose that all instances be off the street
and on the right side, this is called hard margin
classification.

* There are two main issues with hard margin classification.

First, it only works if the data is linearly separable, and
second it is quite sensitive to outliers.

* Figure 5-3 shows the iris dataset with just one additional
outlier: on the left, it is impossible to find a hard margin,
and on the right the decision boundary ends up very
different from the one we saw in Figure 5-1 without the
outlier, and it will probably not generalize as well.

.
=

i

e

Outlier N "\
£ 15| | F15F T, H‘l -
T ol \DI TN |H |
_;1.0- |mD055lb‘e : 1ie BT *‘.h: JL
M "n.‘

3 05 U@@ 05 U@ﬂ%ﬁ RN
0 0. 0000 0 | N
uL_ | ul Quilier o
(1 !]] (1 1] i]
Petal length Petal [ength

Figure 5-3. Hard margin sensitivity fo outler

To avoid these issues it is preferable to use a more flexible model. The
objective is to find a good balance between keeping the street as large as
possible and limiting the margin violations (i.e., instances that end up in the
middle of the street or even on the wrong side). This is called soft margin
classification.

In Scikit-Learn’s SVM classes, you can control this balance using the C
hyperparameter:a smaller C value leads to a wider street but more margin
violations. Figure 5-4 shows the decision boundaries and margins of two
soft margin SVM classifiers on a nonlinearly separable dataset.

On the left, using a high C value the classifier makes fewer margin
violations but ends up with a smaller margin. On the right, using a low C
value the margin is much larger, but many instances end up on the street.

However, it seems likely that the second classifier will generalize better: in
fact even on this training set it makes fewer prediction errors, since most
of the margin violations are actually on the correct side of the decision
boundary.

Iris Dataset

« Attribute
Information:

|. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:

-- Iris Setosa

-- Iris Versicolour

-- Iris Virginica

VCONOUAWN-S

10

| 25

A B C D
Sepal Length Sepal Width Petal Lengtl'c‘t:]Petal wWwidth
- 5.1 3.5 1.4 0.2

4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2

5 3.6 1.4 0.2

| 5.4 3.9 1.7 o.4a
4.6 3.4 1.4 0.3
5 3.4 1.5 0.2
4 .49 2.9 1.4 0.2
4.9 3.1 1.5 oO.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 3 1.4 O.1
4.3 3 1.4 oO.1
5.8 4 1.2 0.2
5.7 4.4 1.5 0.4
5.9 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.9 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 u 0.2
5.1 3.3 1.7 0.5

Iris Dataset

E
Class
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris—-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris—-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris—-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

9514 & Iris-Virginica A | 151 N)
' ' Iy i i i

£ Mw w ris-Versicolor A A i L i S A ohdod 11 i
E 710 4 O T T et T A A4 4 a
<
e
215
a

1.0

4.0 45 a0 5.5 6.0 40 45 2.0 5.5 6.0

Petal length Petal length

Figure 5-4. Fewer margin violations versus large margin

If your SVM model is overfitting, you can try regularizing it by
reducing C.

import numpy as np

from sklearn import datasets

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load iris()
X = iris["data"][:, (2, 2)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica

svm_clf = Pipeline((
("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge")),

))

svm_clf.fit(X_scaled, y)

Then, as usual, you can use the model to make predictions:

>>> svm_clf.predict([[5.5, 1.7]]1)
array([1.])

Dr.B.Santhosh Kumar 163

Nonlinear SVM Classification

A

Figure 5-5. Adding features to make a dataset linearly separable

from sklearn.datasets import make _moons

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures

polynomial_svm_clf = Pipeline((
("poly features", PolynomialFeatures(degree=3)),
("scaler", StandardScaler()),
("svm_clf", LinearSVC(C=10, loss="hinge"))
)

polynomial svm_clf.fit(X, y)

Dr.B.Santhosh Kumar

165

15 | , ! !

L9 . 5 mmm ®

0.0L. . ® "

e e

10F __________ _______ T l. __________ _________ -
LA

05kF - ...‘n ________ R - S -

.D | | |
-15 -1.0 -05 0.0 05 1.0

Figure 5-6. Linear SVM classifier using polynomial features

Polynomial Kernel

* Adding polynomial features is simple to implement and can
work great with all sorts of Machine Learning algorithms, but
at a low polynomial degree it cannot deal with very complex
datasets, and with a high polynomial degree it creates a huge
number of features, making the model too slow.

* Fortunately, when using SVMs you can apply an almost
miraculous mathematical technique called the kernel trick .It
makes it possible to get the same result as if you added many
polynomial features, even with very highdegree polynomials,
without actually having to add them.

* So there is no combinatorial explosion of the number of
features since you don’t actually add any features. This trick is
implemented by the SVC class.

from sklearn.svn {mport SVC
poly kernel svm_clf = Pipeline((
("scaler”, StandardScaler()),
("syn_clf", VC(kernel="poly", deqree=3, coeff=l, (=5))

)
poly kernel swm clf fit(X, y)

Dr.B.Santhosh Kumar 168

d=3,r=1,C=5

-1.0 i | |

-15 =10 =05 00

05 10
L

d=10,r=100,C'=5

Figure 5-7. SVM classifiers with a polynomial kernel

Adding Similarity Features

Another technique to tackle nonlinear problems is to add

features computed using a similarity function that measures how
much each instance resembles a particular landmark.

For example, let’s take the one-dimensional dataset discussed earlier
and add two landmarks to itat x;, =—=2 and x;, = |

Next, let’s define the similarity function to be the Gaussian
Radial Basis Function (RBF) with y = 0.3

Equation 5-1. Gaussian RBF

dy(x,€) = exp (~y] x|’

1,00 . -
;I Sdy
075k s S S
N ,I'
2 o |
b [
S 050f i
E '
v ’ s
025} " . n
0.00 a—a- @ - @ﬂ ———
-4 -2 0 7
T

1.0 i : :
OBL o
s A
06+ : 2
) T OX
[
S
i .
0.2 N :
*I H
| : . . i.
0.0 = :
b -
0.0 0.2 04 0.6 0.8 1.0
dg

Figure 5-8. Similarity features using the Gaussian RBF

Gaussian RBF Kernel

rbf kernel svm clf = Pipeline((
("scaler", StandardScaler()),

("svn_clf", SVC(kernel="rbf", gamnas5, C=0.801))

)
rbf kernel svm clf.fit(X, y)

15

1.0

D5
€L

0.0

-0.5

~1.0

15

1.0

o
Lo

0.0

-0.5

-1.0

v=0.1,C=0.001

-15

05 1.0

I

-1.0 =05 0.0

y=5,C=0.001

T T

-1.5

0.5
I

-1.0 =05 0.0

-1.0

T

gk

v=0.1,C= 1000

n ‘I'
A

N
A : y :
A A :

i

A A A

-15

-1.0 -0.5

I

15

v=5,C= 1000

A 0

-1.0
=15

-1.0 =05

Figure 5-9. SVM classifiers using an RBF kernel

Computational Complexity

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

(fass Time complexity Out-of-core support Scaling required Kernel trick
LinearsvC O(mxn) No Yes No
SGDClassifier Omxn) Yes Yes No

SVC O’ n) to Om* xn) No Yes Yes

SVM Regression

* The SVM algorithm is quite versatile: not only does it support
linear and nonlinear classification, but it also supports linear
and nonlinear regression.

* The trick is to reverse the objective: instead of trying to fit the
largest possible street between two classes while limiting
margin violations, SVM Regression tries to fit as many
instances as possible on the street while limiting margin
violations (i.e., instances off the street). The width of the street
is controlled by a hyperparameter ¢

=
[
=
=

100 — ¥ f@%@#. 10
9+ ol
Bt al
Y4l 7}
6 6l
5 5}
4t 4
) 3.0 0.5 1.0 1.5 2.0

Figure 5-10. SVM Regression

from sklearn.svm import LinearSVR

svm_reg = LinearSVR(epsilon=1.5)
svm_reg. fit(X, y)

To tackle nonlinear regression tasks, you can use a kernelized SVM model. For exam-
ple, Figure 5-11 shows SVM Regression on a random quadratic training set, using a
2".degree polynomial kernel. There is little regularization on the left plot (i.e., a large
C value), and much more regularization on the right plot (i.e., a small C value).

degree =2, C'=100,e=0. 1 degree =2, C'=10.01,e=0.1

1.0 1.0
— U
0.BF 08} g
0.6 0.6 %
y %@ QP
0.4] n T - @- :
b o
0.2
0.0

Figure 5-11. SVM regression using a 2"-degree polynomial kernel

» The SVR class is the regression equivalent of the SVC class,
and the LinearSVR class is the regression equivalent of the

LinearSVC class.

fron inport SVR

svm_poly_req = SVR(kernel="poly", deqree=, (=168, epsilon=6.1)
svm_poly req.fit(X, y)

Training and Visualizing a Decision Tree

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load _iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target

tree clf = DecisionTreeClassifier(max_depth=2)
tree clf.fit(X, v)

from sklearn.tree import export_graphviz

export_graphviz(
tree clf,
out_file=image path({"iris_tree.dot"),
feature_names=iris.feature_names[2:],
class_names=iris.target_names,
rounded=True,
filled=True

§ dot -Tpng iris_tree.dot -0 iris_tree.png

(petal length (cm) <= 2.45)
gini = 0.6667
samples = 150
value =[50, 50, 50]
N class = setosa y

True \:alse

fpetal width (cm) <= 1.75)
gini = 0.5
samples = 100
value = [0, 50, 50]
class = versicolor

/

gini=0.168
samples = 54
value = [0, 49, 5]
class = versicolor

Figure 6-1. Iris Decision Tree

Dr.B.Santhosh Kumar 180

Estimating Class Probabilities

>»> tree_clf.predict_proba([[5, 1.5]])
array([[8. , 0.90746741, 0.69259259]])

>>> tree clf.predict([[5, 1.5]])
array([1])

Making Predictions

Equation 6-1. Gini impurity
. 2
G.=1- .
i k‘g lPr,k

» D15 the ratio of class k instances among the training instances in the i* node.

gintscore equal o 1 - (4] - (4934 - (134" 0,168

3.0

251 ; A kb
L &
Abdh A A & i
: uh'n &
- 2.0 ddbd b
215 N el .
r NN i
i EEER R
& 1.0 Depth=0 " s
0.5 % (Depth=2)’
@ 000 0 :
- o000 O o :
uﬂ 0] I] T-|]]
0 1 2 3 4 5 6 7
Petal length

Figure 6-2. Decision Tree decision boundaries

The CART Training Algorithm

Scikit-Learn uses the Classification And Regression Tree (CART) algorithm to train
Decision Trees (also called “growing” trees).

The algorithm first splits the training set in two subsets using a single feature
k and a threshold t; (e.g., “petal length < 2.45 cm”).

It searches for the pair (k, t,) that produces the purest subsets (weighted by their
size). The cost function that the algorithm tries to minimize is given by
Equation 6-2.

Equation 6-2. CART cost function for classification

I(k.1,) = Me mrlght
{ ! JR} - " left t m]'ighl

) Gl jright Measures the impurity of the left/right subset,
where

Miefi/right 19 the number of instances in the left/right subset.

» Once it has successfully split the training set in two, it splits
the subsets using the same logic, then the sub-subsets and so
on, recursively.

» |t stops recursion once it reaches the maximum depth
(defined by the max_depth hyperparameter), or if it cannot

find a split that will reduce impurity.

» A few other hyperparameters control additional stopping
conditions(min_samples_split,min_samples_leaf,
min_weight fraction_leaf, and max_leaf nodes).

Computational Complexity

» Making predictions requires traversing the Decision Tree from
the root to a leaf. Decision Trees are generally approximately
balanced, so traversing the Decision Tree requires going
through roughly O(log,(m)) nodes.

* However, the training algorithm compares all features (or less if
max_features is set) on all samples at each node. This results in
a training complexity of O(n X m log(m)).

Gini Impurity or Entropy!?

* By default, the Gini impurity measure is used, but you can
select the entropy impurity measure instead by setting the
criterion hyperparameter to "entropy".

H
H;= - kgl P;‘,klﬂg (P;‘,k)
Pik =0

—glﬂg(ﬂ) 14l::rg() 0.31.

Regularization Hyperparameters

Generally you can restrict the maximum depth of the
Decision Tree using max_depth hyperparameter. The default
value is None, which means unlimited. Reducing max_depth
will regularize the model and thus reduce the risk of
overfitting.

min_samples_split : the minimum number of samples a node
must have before it can be split.

min_samples_leaf : the minimum number of samples a leaf
node must have.

min_weight fraction_leaf : same as min_samples_leaf but
expressed as a fraction of the total number of weighted
instances

* max_leaf nodes : maximum number of leaf nodes.

e max_features : maximum number of features that are evaluated
for splitting at each node.

* Increasing min_* hyperparameters or reducing max_*
hyperparameters will regularize the model.

No restrictions min_samples _leaf = 4

L5

1.0

T T
DOF & ‘ 0.0
—0.5 = —0.5
[]
=1.0 i Il i =1.0 i i L i Il
-1.5 -0 =05 o0 O3 10 15 20 25 -5 -1.0 -0 Q0 05 10 L 20 25

I My

Regression

| # Quadratic training set + noise
p. zandom, seed (42)

n = 200

% = np.random, rand(n, 1|

p=d [f-0.3) .

y =y * op.random. randnfm, 1) / 10

fron sklearn,tree import DecisionlreeReqressor

tree req = DecisionlresReqressor (max depth=l, random state=4l)
tree req.fit(¥, y)

x1<=0.1973)
mse = 0.0978

samples = 200

1t.nalue 0.3539 y

Tru/

" x1<=0.0917
mse = 0.0377
samples = 44

kvalue =(.6894 y

l

\alse

(x1<=07718)
mse = 0.074
samples = 156

\value =0.2592)

|

mse = 0.0131 mse = 0.0151
samples = 24 samples = 110
value = 0.5522 value =0.1106

mse = 0.0359
samples = 46
value = 0.6146

Figure 6-4. A Decision Tree for regression

Equation 6-4. CART cost function for regression

n M2
MSEnndf - Z (ynud-f: - y{”)
i € node

Yy

M. dei € node

Iwri ht

ey g
] (k ri) MSE1 it TMSEri " where

y node ~

Ensemble Learning and Random
Forests

o If you aggregate the predictions of a group of predictors such as
classifiers or regressors, you will often get better predictions than
with the best individual predictor.

» A group of predictors is called an ensemble, thus, this technique is
called Ensemble Learning, and an Ensemble Learning algorithm is

called an Ensemble method.

* For example, you can train a group of Decision Tree classifiers,
each on a different random subset of the training set. To make
predictions, you just obtain the predictions of all individual
trees, then predict the class that gets the most votes. Such an
ensemble of Decision Trees is called a Random Forest

Voting Classifiers

Logistic SVM Random
Regression Classifier Forest Classifier
Tﬁ'ﬁ:ﬂg&
Q0

-

Other...

Diverse
predictors

Figure 7-1. Training diverse classifiers

* A very simple way to create an even better classifier is to
aggregate the predictions of each classifier and predict the

class that gets the most votes. This majority-vote classifier
is called a hard voting classifier.

)
X

Ensemble’s prediction
(e.g., majority vote)

& %

r 3\
* O ,/") -
r .
._ \i{) L U o \;I; Predictions
ﬂ% Diverse
predictors
A

Fipure 7-2. Hard voting classifier predictions

* [f all classifiers are able to estimate class probabilities (i.e., they
have a predict_proba() method), then you can tell Scikit-Learn
to predict the class with the highest class probability, averaged
over all the individual classifiers.

e This is called soft voting. It often achieves higher performance than
hard voting because it gives more weight to highly confident
votes.

e Al you need to do is replace voting="hard" with
voting="soft" and ensure that all classifiers can estimate class

probabilities.

Bagging and Pasting

* The approach of using the same training algorithm for every
predictor, but to train them on different random subsets of

the training set where the sampling is performed with
replacement is called Bagging.

¢ If the sampling is performed without replacement it is called

Pasting.
\ j"’.‘.’;l Yo _%F By e

Training

[t [122) [z [be)
W

Random sampling
with replacement = bootstrap)

"'- o9 Training set
'D o

Bagging and Pasting in Scikit-Learn

» Scikit-Learn offers a simple API for both bagging and pasting with
the BaggingClassifier class (or BaggingRegressor for regression).

* The following code trains an ensemble of 500 Decision Tree
classifiers each trained on 100 training instances randomly
sampled from the training set with replacement (this is an
example of bagging, but if you want to use pasting instead, just
set bootstrap=False).

* The n_jobs parameter tells Scikit-Learn the number of CPU
cores to use for training and predictions (—I tells Scikit-Learn to
use all available cores)

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

pag_clf = BaggingClassifier(
DecisionTreeClassifier(), n_estimators=3500,
max_samples=100, bootstrap=True, n_jobs=-1
)
pag_clf.fit(X train, y train)
y_pred = bag_clf.predict(X test)

Out-of-Bag Evaluation

* With bagging, some instances may be sampled several times
for any given predictor, while others may not be sampled at all.

e By default a BaggingClassifier samples m training instances
with replacement (bootstrap=True), where m is the size of the
training set.

e This means that only about 63% of the training instances are
sampled on average for each predictor. The remaining 37% of
the training instances that are not sampled are called out-of-
bag (oob) instances.

In Scikit-Learn, you can set oob_score=True when creating a BaggingClassifier to
request an automatic oob evaluation after training. The following code demonstrates

this. The resulting evaluation score is available through the oob_score_ variable:

>»> bag_clf = BaggingClassifier(
533 DecisionTreeClassifier(), n_estimators=560,
>33 bootstrap=True, n_jobs=-1, oob_score=True)

»»> pag_clf.fit(X_train, y train)
»»> bag_clf.oob_score_
B, 93066666666666664

According to this oob evaluation, this BaggingClassifier is likely to achieve about
93.1% accuracy on the test set. Let’s verify this:

>»> from sklearn.metrics import accuracy score
>3 § pred = bag_clf.predict(X test)

>»> 3ccuracy score(y test, y pred)
B.93600000000000005

* The oob decision function for each training instance is also
available through the oob decision_function_ variable. In this
case the decision function returns the class probabilities for
each training instance.

* For example, the oob evaluation estimates that the second
training instance has a 60.6% probability of belonging to the
positive class (and 39.4% of belonging to the negative class)

>>> bag_clf.oob_decision_function_

array([[@. , 1. 13
[0.60588235, 0.39411765],
[1. , 0. 1,
[1. , 6. ’
[0. , 1. 1,
[©.48958333, 0.51041667]])

Random Patches and Random Subspaces

The BaggingClassifier class supports sampling the features as
well. This is controlled by two hyperparameters: max_features
and bootstrap features.

They work the same way as max_samples and bootstrap, but
for feature sampling instead of instance sampling.

Thus, each predictor will be trained on a random subset of the
input features.

This is particularly useful when you are dealing with high-
dimensional inputs (such as images).

Sampling both training instances and features is called the
Random Patches method. Keeping all training instances (i.e.,
bootstrap=False and max_samples=1.0) but sampling features
(i.e.,bootstrap_features=True and/or max_features smaller
than 1.0) is called the Random Subspaces method.

Random Forests

* A Random Forest is an ensemble of Decision Trees, generally
trained via the bagging method (or sometimes pasting)

* Instead of building a BaggingClassifier and passing it a
DecisionTreeClassifie, you can instead use the
RandomForestClassifier class, which is more convenient and
optimized for Decision Trees.

* The following code trains a Random Forest classifier with 500

trees (each limited to maximum 16 nodes), using all available
CPU cores

from sklearn.ensenble import RandomForestClassifier

rnd clf = RandonForestClassifier(n estimators=300, max leaf nodes=16, n jobs=-1)
rna_cLf. fit(K tratn, y train)

y_pred rf = rd_clf . predtct(X test)

Dr.B.Santhosh Kumar 205

Dimensionality Reduction

» Many Machine Learning problems involve thousands or even
millions of features for each training instance which makes
training extremely slow and can also make it much harder to
find a good solution.

* This problem is often referred to as the curse of dimensionality.

* For example, consider the MNIST images the pixels on the
image borders are almost always white, so you could
completely drop these pixels from the training set without

losing much information.

Main Approaches for Dimensionality
Reduction

 Projection :

Figure 8-2. A 3D dataset lying close to a 2D subspace

* Notice that all training instances lie close to a plane: this is a
lower-dimensional (2D) subspace of the high-dimensional
(3D) space.

* Now if we project every training instance perpendicularly
onto this subspace (as represented by the short lines
connecting the instances to the plane), we get the new 2D
dataset shown in Figure 8-3.

* We have just reduced the dataset’s dimensionality from 3D to
2D. Note that the axes correspond to new features z/ and z2
(the coordinates of the projections on the plane).

05k oo

“2 00| -

=05

-1.0

—-1.5

|
-1.0

]
0.0
2]

|
—-0.5

0.5 1.0

Figure 8-3. The new 2D dataset after projection

* However, projection is not always the best approach to
dimensionality reduction. In many cases the subspace may
twist and turn, such as in the famous Swiss roll toy dataset

represented in Figure 8-4.

T 15

Figure 8-4. Swiss roll dataset

Manifold Learning

T 15 - A s
BRI s T Py
- 10 m&m 2 adam é& "
IR Yeu- WYy S IIY "y -
L BN L4 4
0 S oz 10 2 \ 4 t B, ;

Figure 8-6. The decision boundary may not always be simpler with lower dimensions

PCA

Principal Component Analysis (PCA) is by far the most popular
dimensionality reduction algorithm. First it identifies the hyperplane
that lies closest to the data, and then it projects the data onto it.

Before you can project the training set onto a lower-dimensional
hyperplane, you first need to choose the right hyperplane.

For example, a simple 2D dataset is represented on the left of
Figure 8-7, along with three different axes (i.e., one-dimensional
hyperplanes). On the right is the result of the projection of the
dataset onto each of these axes.

As you can see, the projection onto the solid line preserves the
maximum variance, while the projection onto the dotted line
preserves very little variance, and the projection onto the dashed
line preserves an intermediate amount of variance

] |

-1.0 =05 00 05 1.0 -2.0-1.5-1.0-050.0 05 1.0 15 2.0

I <

Figure 8-7. Selecting the subspace onto which to project

Principal Components

o PCA identifies the axis that accounts for the largest amount
of variance in the training set.

e In Figure 8-7, it is the solid line. It also finds a second axis,
orthogonal to the first one, that accounts for the largest
amount of remaining variance.

¢ |n this 2D example there is no choice: it is the dotted line. If it
were a higher-dimensional dataset, PCA would also find a
third axis, orthogonal to both previous axes, and a fourth, a
fifth, and so on—as many axes as the number of dimensions in
the dataset.

e The unit vector that defines the ith axis is called the ith

principal component (PC). In Figure the Ist PC is cl and the 2nd
PC is c2.

o There is a standard matrix factorization technique called
Singular Value Decomposition (SVD) that can decompose the
training set matrix X into the dot product of three matrices
U - X - VT where V' contains all the principal components that
we are looking for, as shown in Equation 8-1.

Equation 8-1. Principal components matrix

Vi=lcp ¢y v c

- The following Python code uses NumPy's sva() function to obtain all the principal.
components of the training set, then extracts the frstfwo PCs

K centered = X - X.nean(axis=0)

U, 5, V= np.Linalg.sva(X centered)
o=V, 0]

vERRIF

Projecting Down to d Dimensions

Once you have identified all the principal components, you can
reduce the dimensionality of the dataset down to d dimensions
by projecting it onto the hyperplane defined by the first d
princibal components.

Selecting this hyperplane ensures that the projection will
preserve as much variance as possible.

To project the training set onto the hyperplane, you can
simply compute the dot product of the training set matrix X
by the matrix W(d, defined as the matrix containing the first d
principal components.

Equation 8-2. Projecting the training set down to d dimensions

Knfi-pmj =X wd

The following Python code projects the training set onto the plane defined by the first
two principal components:

W2 = V.T[:, 2]
X2D = X _centered.dot(h2)

Using Scikit-Learn

Scikit-Learns PCA class implements PCA using SVD decomposition just like we did
before. The following code applies PCA to reduce the dimensionality of the dataset
down to two dimensions (note that it automatically takes care of centering the data):

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)
X2D = pca.fit_transform(X)
After fitting the PCA transformer to the dataset, you can access the principal compo-

nents using the components_ variable (note that it contains the PCs as horizontal vec-
tors, so, for example, the first principal component is equal to pca. components_.T[:,

0]).

Explained Variance Ratio

* Another very useful piece of information is the explained

variance ratio of each principal component, available via the
explained variance_ratio variable.

|t indicates the proportion of the dataset’s variance that lies
along the axis of each principal component.

>>> print(pca.explained variance ratio)
array([0.84248607, 0.14631839])

This tells you that 84.2% of the dataset’s variance lies along the first axis, and 14.6%
lies along the second axis. This leaves less than 1.2% for the third axis, so it is reason-
able to assume that it probably carries little information.

Choosing the Right Number of Dimensions

¢ Instead of arbitrarily choosing the number of dimensions to
reduce down to, it is generally preferable to choose the
number of dimensions that add up to a sufficiently large
portion of the variance (e.g., 95%)

* The following code computes PCA without reducing
dimensionality, then computes the minimum number of
dimensions required to preserve 95% of the training set’s
variance:

pca = PCA()

pca.fit(X)

cumsum = np.cumsum(pca.explained variance ratio_)
d = np.argmax(cumsum >= 0,95) + 1

» However, there is a much better option: instead of specifying
the number of principal components you want to preserve,
you can set n_components to be a float between 0.0 and 1.0,
indicating the ratio of variance you wish to preserve:

pca = PCA(n_components=0.95)
X_reduced = pca.fit_transform(X)

1.0

0.8+

0.6F

0.4

Explained variance

0 50 100 150 200 250 300 350 400
Dimensians

Figure 8-8. Explained variance as a function of the number of dimensions

PCA for Compression

Obviously after dimensionality reduction, the training set takes up
much less space. For example, try applying PCA to the MNIST
dataset while preserving 95% of its variance.

You should find that each instance will have just over 150 features,
instead of the original 784 features. So while most of the variance is
preserved, the dataset is now less than 20% of its original size.

It is also possible to decompress the reduced dataset back to 784
dimensions by applying the inverse transformation of the PCA
projection. Of course this won’t give you back the original data but
it will likely be quite close to the original data.

The mean squared distance between the original data and the
reconstructed data (compressed and then decompressed) is called
the reconstruction error.

pca = PCA(n_components = 154)
X_mnist_reduced = pca.fit_transform(X_mnist)
X_mnist_recovered = pca.inverse_transform(X_mnist_reduced)

Yy HO~77 1 HO~77
FI0%¢ F30D5/(
OL276 ©277 6
206N Q206

H59%2% H4H59%#

Figure 8-9. MNIST compression preserving 95% of the variance

The equation of the inverse transformation is shown in Equation 8-3.

Equation 8-3. PCA inverse transformation, back to the original number of
dimensions

T
Krecuvfred - Xd-pmj) wd

Incremental PCA

One problem with the implementation of PCA is that it
requires the whole training set to fit in memory in order for
the SVD algorithm to run.

Incremental PCA (IPCA) algorithms have been developed to split
the training set into mini-batches and feed an IPCA algorithm
one mini-batch at a time.

This is useful for large training sets, and also to apply PCA
online.

The following code splits the MNIST dataset into 100 mini-
batches (using NumPy’s array split() function) and feeds them
to Scikit-Learn’s IncrementalPCA class to reduce the
dimensionality of the MNIST dataset down to [54
dimensions.

Note that you must call the partial_fit() method with each
mini-batch rather than the fit() method with the whole
training set

from sklearn.decomposition import IncrementalPCA

n_batches = 100
inc_pca = IncrementalPCA(n_components=154)

for X_batch in np.array_split(X_mnist, n_batches):
inc_pca.partial fit(X batch)

X mnist_reduced = inc_pca.transform(X_mnist)

o Alternatively, you can use NumPy’s memmap class, which allows
you to manipulate a large array stored in a binary file on disk as
if it were entirely in memory .The class loads only the data it
needs in memory, when it needs it.

* Since the IncrementalPCA class uses only a small part of the

array at any given time, the memory usage remains under
control.

K mm = np.menmap(filename, dtype="float32", mode="readonly", shape=(m, n))

patch size = m // n_batches
inc_pca = IncrementalPCA(n_components=154, batch size=batcn size)

inc_pca. fit(X_mm)

Randomized PCA

» Scikit-Learn offers yet another option to perform PCA, called
Randomized PCA

e |t is dramatically faster than the previous algorithms when d is
much smaller.

rnd_pca = PCA(n_components=154, svd_solver="randomized")
X_reduced = rnd_pca.fit_transform(X_mnist)

Kernel PCA

* The kernel trick can be applied to PCA, making it possible to

perform complex nonlinear projections for dimensionality
reduction. This is called Kernel PCA (kPCA)

from import KernelPCA

rbf pca = KernelPCA(n_components = 2, kernel="rbf", qamma=60.04)
X_reduced = rof_pca.fit_transform(X)

