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Fundamentals of Machine Learning

 Machine Learning is the science of programming
computers so they can learn from data.

 Machine Learning is the field of study that gives
computers the ability to learn without being
explicitly programmed.

 A computer program is said to learn from
experience E with respect to some task T and
some performance measure P, if its performance
on T, as measured by P, improves with
experience E.

Dr.B.Santhosh Kumar 1



Example
 Spam filter is a Machine Learning program that can

learn to flag spam given examples of spam emails (e.g.,
flagged by users) and examples of regular (nonspam,
also called “ham”) emails.

 The examples that the system uses to learn are called
the training set. Each training example is called a training
instance (or sample).

 In this case, the task T is to flag spam for new emails,
the experience E is the training data, and the
performance measure P needs to be defined; for example,
you can use the ratio of correctly classified emails.

 This particular performance measure is called
accuracy and it is often used in classification tasks.

 If you just download a copy of Wikipedia, your
computer has a lot more data, but it is not suddenly
better at any task.Thus, it is not Machine Learning.
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The traditional approach
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Use of Machine Learning
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Automatic Adaptation
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Machine Learning helps Humans Learn
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Types of Machine Learning Systems

 Machine Learning systems can be classified according to the

amount and type of supervision they get during

training(supervised, unsupervised, semi supervised, and

Reinforcement Learning)

 Whether or not they can learn incrementally on the fly

(online versus batch learning)

 Whether they work by simply comparing new data points to

known data points, or instead detect patterns in the training

data and build a predictive model, much like scientists do

(instance-based versus model-based learning)
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Supervised learning

Examples: k-Nearest Neighbors, Linear Regression, Logistic

Regression, Support Vector Machines (SVMs) , Decision Trees and

Random Forests, Neural networks2
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Unsupervised learning

Data is unlabeled

Examples: Clustering -- k-Means, Hierarchical Cluster Analysis

(HCA), Visualization and dimensionality reduction -- Principal

Component Analysis (PCA), Anomaly detection, Association rule

learning -- Apriori
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 A related task is dimensionality reduction, in which
the goal is to simplify the data without losing too
much information.

 One way to do this is to merge several
correlated features into one. For example, a car’s
mileage may be very correlated with its age.

 So the dimensionality reduction algorithm will
merge them into one feature that represents
the car’s wear and tear. This is called feature
extraction.
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Semi supervised learning

Partially labeled training data i.e. usually a lot of unlabeled

data and a little bit of labeled data.
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Reinforcement Learning
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Batch Learning

 In batch learning, the system is incapable of learning
incrementally: it must be trained using all the available data

 This will generally take a lot of time and computing
resources, so it is typically done offline.

 First the system is trained, and then it is launched into
production and runs without learning anymore; it just
applies what it has learned.This is called offline learning.

 If you want a batch learning system to know about new
data you need to train a new version of the system from
scratch on the full dataset (not just the new data, but also
the old data), then stop the old system and replace it with
the new one.
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online learning
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Online Learning with lots of data
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Instance Based Learning
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Model Based Learning
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 Instance-based learning algorithm : Slovenia has the closest GDP
per capita to that of Cyprus ($20,732), and since the OECD’ life
satisfaction is 5.7, you would have predicted a life satisfaction of
5.7 for Cyprus.

 If you look at the two next closest countries, you will find
Portugal and Spain with life satisfactions of 5.1 and 6.5,
respectively. Averaging these three values, you get 5.77, which is
pretty close to your model-based prediction. This simple
algorithm is called k-Nearest Neighbors regression (in this example,
k = 3).

 Replacing the Linear Regression model with k-Nearest
Neighbors regression in the previous code is as simple as
replacing this line:

clf = sklearn.linear_model.LinearRegression()

with this one:

clf= sklearn.neighbors.KNeighborsRegressor(n_neighbors=3)
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Challenges

 Insufficient Quantity of Training Data

 Non representative Training Data

 Poor-Quality Data

 Irrelevant Features

 Overfitting the Training Data

 Underfitting the Training Data
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Insufficient Quantity of Training Data

 It takes a lot of data for most Machine Learning

algorithms to work properly.

 Even for very simple problems you typically need

thousands of examples, and for complex problems

such as image or speech recognition you may need

millions of examples (unless you can reuse parts of

an existing model).
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Non Representative Training Data
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 It is crucial to use a training set that is representative

of the cases you want to generalize to.

 If the sample is too small, you will have sampling noise

i.e., nonrepresentative data.

 Even very large samples can be non representative if

the sampling method is flawed. This is called sampling

bias.
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Poor Quality Data

 If some instances are clearly outliers, it may help to

simply discard them or try to fix the errors manually.

 If some instances are missing a few features (e.g., 5%

of your customers did not specify their age)

 you must decide whether you want to ignore this

attribute altogether, ignore these instances, fill in the

missing values (e.g., with the median age), or train one

model with the feature and one model without it, and

so on.
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Irrelevant Features

 A critical part of the success of a Machine Learning

project is coming up with a good set of features to

train on.This process is called feature engineering.

 Feature selection: selecting the most useful features to

train on among existing features.

 Feature extraction: combining existing features to

produce a more useful one.

 Creating new features by gathering new data.
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Overfitting the Training Data

 Overfitting: The model performs well on the training

data, but it does not generalize well.
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 Constraining a model to make it simpler and reduce 

the risk of overfitting is called regularization.

The amount of regularization to apply during learning can be

controlled by a hyperparameter. A hyperparameter is a

parameter of a learning algorithm (not of the model)
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Underfitting the Training Data

 Underfitting is the opposite of overfitting: it occurs when 

your model is too simple to learn the underlying 

structure of the data. 

 The main options to fix this problem are:

• Selecting a more powerful model, with more 

parameters

• Feeding better features to the learning algorithm    

(feature engineering)
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Testing and Validating

 Split data in to two sets:Training set and test set.

 Error rate on new cases is called generalization error.

 If the training error is low but the generalization error

is high, it means that your model is overfitting the

training data.

 Cross validation – Split training set in to

complementary subsets

 model is trained against a different combination of 

these subsets and validated against the remaining 

parts.
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Cross  Validation
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End-to-End Machine Learning Project

 1. Look at the big picture.

Frame the problem

Select the Performance Measure

 2. Get the data.

 3. Discover and visualize the data to gain insights.

 4. Prepare the data for Machine Learning 
algorithms.

 5. Select a model and train it.

 6. Fine-tune your model.

 7. Present your solution.

 8. Launch, monitor, and maintain your system.
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Look at the Big Picture
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Working with Real data

 Popular data repositories:

UC Irvine Machine Learning Repository

Kaggle datasets

Amazon’s AWS datasets

 Meta portals (they list open data repositories):

http://dataportals.org/

http://opendatamonitor.eu/

http://quandl.com/

 Other pages listing many popular open data repositories:

Wikipedia’s list of Machine Learning datasets

Quora.com question

Datasets subreddit
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Machine Learning Pipeline for Real 

Estate Investments
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Frame the Problem

 A sequence of data processing components is

called a data pipeline

 First, you need to frame the problem: is it

supervised, unsupervised, or Reinforcement

Learning?

 Is it a classification task, a regression task, or

something else?

 Should you use batch learning or online

learning techniques?
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Select a Performance Measure

 A typical performance measure for regression 

problems is the Root Mean Square Error 

(RMSE).
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MNIST 
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Training a Binary Classifier
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Performance Measures
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Accuracy - Accuracy is the ratio of correctly predicted

observation to the total observations.
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Confusion Matrix

Now Get The Confusion Matrix
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 Each row in a confusion matrix represents an actual

class, while each column represents a predicted class.

 The first row of this matrix considers non-5 images

(the negative class): 53,272 of them were correctly

classified as non-5s (they are called true negatives), while

the remaining 1,307 were wrongly classified as 5s (false

positives).

 The second row considers the images of 5s (the

positive class): 1,077 were wrongly classified as non-5s

(false negatives), while the remaining 4,344 were correctly

classified as 5s (true positives).
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 A perfect classifier would have only true positives

and true negatives, so its confusion matrix would

have nonzero values only on its main diagonal(top

left to bottom right):

array([[54579           , 0],

[ 0,               5421]])
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PRECISION and RECALL

 An interesting one to look at is the accuracy of
the positive predictions, this is called the precision
of the classifier.
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PRECISION and RECALL

 precision is typically used along with another metric
named recall, also called sensitivity or true positive rate
(TPR):

 This is the ratio of positive instances that are correctly
detected by the classifier.
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Precision and Recall
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 It is often convenient to combine precision and recall

into a single metric called the F1 score.

 The F1 score is the harmonic mean of precision and recall

Whereas the regular mean treats all values equally, the

harmonic mean gives much more weight to low

values.

 As a result, the classifier will only get a high F1 score if

both recall and precision are high.
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 The F1 score favors classifiers that have similar precision and

recall. This is not always what you want: in some contexts you

mostly care about precision, and in other contexts you really

care about recall.

 Suppose you train a classifier to detect shoplifters on

surveillance images: it is probably fine if your classifier has only

30% precision as long as it has 99% recall.

 Unfortunately, you can’t have it both ways: increasing precision

reduces recall, and vice versa. This is called the precision/recall

tradeoff.
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 Accuracy - Accuracy is the ratio of correctly
predicted observation to the total observations.

 Precision - Precision is the ratio of correctly
predicted positive observations to the total predicted
positive observations.

 Recall - Recall is the ratio of correctly predicted
positive observations to the all observations in actual
class.

 F1 score - F1 Score is the weighted average of
Precision and Recall.
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Precision/Recall Tradeoff

Dr.B.Santhosh Kumar 62



 Scikit-Learn does not let you set the threshold directly,
but it does give you access to the decision scores that it
uses to make predictions.

 Instead of calling the classifier’s predict() method, you
can call its decision_function() method, which returns a

score for each instance, and then make predictions
based on those scores using any threshold you want:

 y_scores= sgd_clf.decision_function([some_digit])

y_scores

array([ 161855.74572176])

threshold = 0

y_some_digit_pred = (y_scores > threshold)

array([ True], dtype=bool)
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 The SGDClassifier uses a threshold equal to 0, so the
previous code returns the same result as the predict()
method (i.e.,True). Let’s raise the threshold:

 threshold = 200000

y_some_digit_pred = (y_scores > threshold)

y_some_digit_pred

array([False], dtype=bool)

 This confirms that raising the threshold decreases recall.
The image actually represents a 5, and the classifier
detects it when the threshold is 0, but it misses it when
the threshold is increased to 200,000.
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 So how can you decide which threshold to

use?

 For this you will first need to get the scores of

all instances in the training set using the

cross_val_predict() function again.

 But this time specifying that you want it to

return decision scores instead of predictions:

y_scores = cross_val_predict(sgd_clf, X_train,

y_train_5, cv=3,method="decision_function")
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 Now with these scores you can compute 

precision and recall for all possible thresholds

 using the precision_recall_curve() function:
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The ROC Curve

 The receiver operating characteristic (ROC) curve is another common tool
used with binary classifiers.

 It is very similar to the precision/recall curve, but instead of plotting
precision versus recall, the ROC curve plots the true positive rate
(another name for recall) against the false positive rate.

 The FPR is the ratio of negative instances that are incorrectly classified as
positive. It is equal to one minus the true negative rate, which is the
ratio of negative instances that are correctly classified as negative.

FPR = FP/FP+TN

 The TNR is also called specificity. Hence the ROC curve plots sensitivity
(recall) versus 1 – specificity.

TNR = TN/TN+FP
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Multiclass Classification

 Binary classifiers distinguish between two classes, multiclass
classifiers (also called multinomial classifiers) can distinguish
between more than two classes.

 One way to create a system that can classify the digit images
into 10 classes (from 0 to 9) is to train 10 binary classifiers, one
for each digit (a 0-detector, a 1-detector, a 2-detector, and so
on).

 Then when you want to classify an image, you get the decision
score from each classifier for that image and you select the
class whose classifier outputs the highest score.

 This is called the one-versus-all (OvA) strategy (also called
one-versus-the-rest).
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 Another strategy is to train a binary classifier for every pair
of digits: one to distinguish 0s and 1s, another to distinguish
0s and 2s, another for 1s and 2s, and so on.

 This is called the one-versus-one (OvO) strategy. If there are
N classes, you need to train N × (N – 1) / 2 classifiers. For
the MNIST problem, this means training 45 binary
classifiers.

 When you want to classify an image, you have to run the
image through all 45 classifiers and see which class wins the
most duels.

 The main advantage of OvO is that each classifier only
needs to be trained on the part of the training set for the two
classes that it must distinguish.
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 Scikit-Learn detects when you try to use a binary classification
algorithm for a multiclass classification task, and it automatically
runs OvA (except for SVM classifiers for which it uses OvO).

 Let’s try this with the SGDClassifier:

sgd_clf.fit(X_train, y_train)

sgd_clf.predict([some_digit])

array([ 5.])

 This code trains the SGDClassifier on the training set using the
original target classes from 0 to 9 (y_train).

 Then it makes a prediction (a correct one in this case). Under the
hood, Scikit-Learn actually trained 10 binary classifiers, got their
decision scores for the image, and selected the class with the
highest score.
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 some_digit_scores = 
sgd_clf.decision_function([some_digit])

print(some_digit_scores)
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Error Analysis
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 Focus the plot on errors

 First, you need to divide each value in the confusion matrix by

the number of images in the corresponding class
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Multilabel Classification

 Until now each instance has always been assigned to just
one class. In some cases you may want your classifier to
output multiple classes for each instance.

 For example, consider a face-recognition classifier: what
should it do if it recognizes several people on the same
picture? Of course it should attach one label per person it
recognizes.

 Say the classifier has been trained to recognize three faces,
Alice, Bob, and Charlie; then when it is shown a picture of
Alice and Charlie, it should output [1, 0, 1] (meaning “Alice
yes, Bob no, Charlie yes”).

 Such a classification system that outputs multiple binary
labels is called a multilabel classification system.
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Multioutput Classification

 The last type of classification task we are going to discuss
here is called Multioutput-multiclass classification (or simply
multioutput classification).

 It is simply a generalization of multilabel classification where
each label can be multiclass (i.e., it can have more than two
possible values).

 To illustrate this, let’s build a system that removes noise
from images. It will take as input a noisy digit image, and it
will (hopefully) output a clean digit image, represented as an
array of pixel intensities, just like the MNIST images.

 Notice that the classifier’s output is multilabel (one label per
pixel) and each label can have multiple values (pixel intensity
ranges from 0 to 255). It is thus an example of a Multioutput
classification system. Dr.B.Santhosh Kumar 88
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Training Models

Ways of training a Linear Regression Model:

 Using a direct “closed-form” equation that directly computes

the model parameters that best fit the model to the training

set

 Using an iterative optimization approach, called Gradient

Descent (GD), that gradually tweaks the model parameters to

minimize the cost function over the training set, eventually

converging to the same set of parameters as the first method.
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Performance Measure

 A typical performance measure for regression 

problems is the Root Mean Square Error 

(RMSE).
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Linear Regression
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Computational Complexity

 The Normal Equation computes the inverse of XT ・ X,

which is an n × n matrix (where n is the number of

features).The computational complexity of inverting such a matrix

is typically about O(n3).

 In other words, if you double the number of features, you

multiply the computation time by roughly to 23 = 8.

Dr.B.Santhosh Kumar 102



Gradient Descent

 Gradient Descent is a very generic optimization algorithm capable
of finding optimal solutions to a wide range of problems.

 The general idea of Gradient Descent is to tweak parameters
iteratively in order to minimize a cost function

 Concretely, you start by filling θ with random values (this is called
random initialization), and then you improve it gradually, taking one
baby step at a time, each step attempting to decrease the cost
function (e.g., the MSE), until the algorithm converges to a minimum
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Example
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Batch Gradient Descent
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Stochastic Gradient Descent

 The main problem with Batch Gradient Descent is the
fact that it uses the whole training set to compute the
gradients at every step, which makes it very slow when
the training set is large.

 At the opposite extreme, Stochastic Gradient Descent just
picks a random instance in the training set at every step
and computes the gradients based only on that single
instance.

 Obviously this makes the algorithm much faster since it
has very little data to manipulate at every iteration.
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 When the cost function is very irregular this can actually help the
algorithm jump out of local minima, so Stochastic Gradient Descent has a
better chance of finding the global minimum than Batch Gradient Descent
does.

 Therefore randomness is good to escape from local optima, but bad
because it means that the algorithm can never settle at the minimum. One
solution to this dilemma is to gradually reduce the learning rate. The steps
start out large (which helps make quick progress and escape local minima),
then get smaller and smaller, allowing the algorithm to settle at the global
minimum.

 This process is called simulated annealing, because it resembles the process
of annealing in metallurgy where molten metal is slowly cooled down.

 The function that determines the learning rate at each iteration is called
the learning schedule. If the learning rate is reduced too quickly, you may get
stuck in a local minimum, or even end up frozen halfway to the minimum. If
the learning rate is reduced too slowly, you may jump around the minimum
for a long time and end up with a suboptimal solution if you halt training
too early.
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Mini-batch Gradient Descent

 At each step, instead of computing the gradients based on the

full training set (as in Batch GD) or based on just one instance

(as in Stochastic GD), Mini batch GD computes the gradients

on small random sets of instances called minibatches.
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Comparison
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Polynomial Regression
 A simple way to do this is to add powers of each feature as

new features, then train a linear model on this extended set of
features.This technique is called Polynomial Regression.
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Learning Curves
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Learning Curves
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Overfitting example
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Regularized Linear Models
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Ridge Regression
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Lasso Regression

 Least Absolute Shrinkage and Selection Operator Regression

(simply called Lasso Regression) is another regularized version of

Linear Regression: just like Ridge Regression, it adds a

regularization term to the cost function

 It uses the ℓ1 norm of the weight vector instead of half the

square of the ℓ2 norm
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Elastic Net

 Elastic Net is a middle ground between Ridge Regression and

Lasso Regression. The regularization term is a simple mix of

both Ridge and Lasso’s regularization terms, and you can

control the mix ratio r.

 When r = 0, Elastic Net is equivalent to Ridge Regression, and

when r = 1, it is equivalent to Lasso Regression
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Early Stopping

 A very different way to regularize iterative learning algorithms such

as Gradient Descent is to stop training as soon as the validation

error reaches a minimum.This is called early stopping.
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Logistic Regression

 Logistic Regression (also called Logit Regression) is commonly used

to estimate the probability that an instance belongs to a

particular class (e.g., what is the probability that this email is

spam?)

 If the estimated probability is greater than 50%, then the

model predicts that the instance belongs to that class (called

the positive class, labeled “1”)

 Else it predicts that it does not (i.e., it belongs to the negative

class, labeled “0”).This makes it a binary classifier.
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Training and Cost Function
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Iris Dataset

 Attribute 

Information:

1. sepal length in cm 

2. sepal width in cm 

3. petal length in cm 

4. petal width in cm 

5. class: 

-- Iris Setosa

-- Iris Versicolour

-- Iris Virginica
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Iris Dataset
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Decision Boundaries
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Softmax Regression
 The Logistic Regression model can be generalized to

support multiple classes directly, without having to train

and combine multiple binary classifiers.

 This is called Softmax Regression, or Multinomial Logistic

Regression.

 The idea is quite simple: when given an instance x, the

Softmax Regression model first computes a score 

sk(x) for each class k, then estimates the probability of each 

class by applying the softmax function (also called the 

normalized exponential) to the scores. 

 The equation to compute sk (x) should look familiar, as 

it is just like the equation for Linear Regression 

prediction .
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Note that each class has its own dedicated parameter vector θk . All these vectors 

are typically stored as rows in a parameter matrix Θ.

Once you have computed the score of every class for the instance x, you can 

estimate the probability pk that the instance belongs to class k by running the scores 

through the softmax function . It computes the exponential of every score, then 

normalizes them (dividing by the sum of all the exponentials).
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Support  Vector Machines

Linear SVM Classification:

You can think of an SVM classifier as fitting the widest possible

street (represented by the parallel dashed lines) between the

classes.This is called large margin classification.
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Soft Margin Classification

 If we strictly impose that all instances be off the street
and on the right side, this is called hard margin
classification.

 There are two main issues with hard margin classification.

First, it only works if the data is linearly separable, and
second it is quite sensitive to outliers.

 Figure 5-3 shows the iris dataset with just one additional
outlier: on the left, it is impossible to find a hard margin,
and on the right the decision boundary ends up very
different from the one we saw in Figure 5-1 without the
outlier, and it will probably not generalize as well.
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 To avoid these issues it is preferable to use a more flexible model. The
objective is to find a good balance between keeping the street as large as
possible and limiting the margin violations (i.e., instances that end up in the
middle of the street or even on the wrong side). This is called soft margin
classification.

 In Scikit-Learn’s SVM classes, you can control this balance using the C
hyperparameter: a smaller C value leads to a wider street but more margin
violations. Figure 5-4 shows the decision boundaries and margins of two
soft margin SVM classifiers on a nonlinearly separable dataset.

 On the left, using a high C value the classifier makes fewer margin
violations but ends up with a smaller margin. On the right, using a low C
value the margin is much larger, but many instances end up on the street.

 However, it seems likely that the second classifier will generalize better: in
fact even on this training set it makes fewer prediction errors, since most
of the margin violations are actually on the correct side of the decision
boundary.
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Iris Dataset

 Attribute 

Information:

1. sepal length in cm 

2. sepal width in cm 

3. petal length in cm 

4. petal width in cm 

5. class: 

-- Iris Setosa

-- Iris Versicolour

-- Iris Virginica
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Iris Dataset
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Nonlinear SVM Classification
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Polynomial Kernel

 Adding polynomial features is simple to implement and can

work great with all sorts of Machine Learning algorithms, but

at a low polynomial degree it cannot deal with very complex

datasets, and with a high polynomial degree it creates a huge

number of features, making the model too slow.

 Fortunately, when using SVMs you can apply an almost

miraculous mathematical technique called the kernel trick .It

makes it possible to get the same result as if you added many

polynomial features, even with very highdegree polynomials,

without actually having to add them.

 So there is no combinatorial explosion of the number of

features since you don’t actually add any features. This trick is

implemented by the SVC class. Dr.B.Santhosh Kumar 167
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Adding Similarity Features

 Another technique to tackle nonlinear problems is to add

features computed using a similarity function that measures how

much each instance resembles a particular landmark.

 For example, let’s take the one-dimensional dataset discussed earlier

and add two landmarks to it at x1 = –2 and x1 = 1

 Next, let’s define the similarity function to be the Gaussian

Radial Basis Function (RBF) with γ = 0.3
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Gaussian RBF Kernel
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Computational Complexity
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SVM Regression

 The SVM algorithm is quite versatile: not only does it support

linear and nonlinear classification, but it also supports linear

and nonlinear regression.

 The trick is to reverse the objective: instead of trying to fit the

largest possible street between two classes while limiting

margin violations, SVM Regression tries to fit as many

instances as possible on the street while limiting margin

violations (i.e., instances off the street). The width of the street

is controlled by a hyperparameter ϵ
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 The SVR class is the regression equivalent of the SVC class,

and the LinearSVR class is the regression equivalent of the

LinearSVC class.

Dr.B.Santhosh Kumar 178



Training and Visualizing a Decision Tree
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Estimating Class Probabilities
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Making Predictions
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The CART Training Algorithm

Scikit-Learn uses the Classification And RegressionTree (CART) algorithm to train

Decision Trees (also called “growing” trees).

The algorithm first splits the training set in two subsets using a single feature

k and a threshold tk (e.g.,“petal length ≤ 2.45 cm”).

It searches for the pair (k, tk) that produces the purest subsets (weighted by their

size). The cost function that the algorithm tries to minimize is given by

Equation 6-2.
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 Once it has successfully split the training set in two, it splits

the subsets using the same logic, then the sub-subsets and so

on, recursively.

 It stops recursion once it reaches the maximum depth

(defined by the max_depth hyperparameter), or if it cannot

find a split that will reduce impurity.

 A few other hyperparameters control additional stopping

conditions(min_samples_split,min_samples_leaf,

min_weight_fraction_leaf, and max_leaf_nodes).
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Computational Complexity

 Making predictions requires traversing the Decision Tree from

the root to a leaf. Decision Trees are generally approximately

balanced, so traversing the Decision Tree requires going

through roughly O(log2(m)) nodes.

 However, the training algorithm compares all features (or less if 

max_features is set) on all samples at each node. This results in 

a training complexity of O(n × m log(m)).
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Gini Impurity or Entropy?

 By default, the Gini impurity measure is used, but you can 

select the entropy impurity measure instead by setting the 

criterion hyperparameter to "entropy“.
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Regularization Hyperparameters

 Generally you can restrict the maximum depth of the

Decision Tree using max_depth hyperparameter. The default

value is None, which means unlimited. Reducing max_depth

will regularize the model and thus reduce the risk of

overfitting.

 min_samples_split : the minimum number of samples a node

must have before it can be split.

 min_samples_leaf : the minimum number of samples a leaf 

node must have.

 min_weight_fraction_leaf :  same as min_samples_leaf but 

expressed as a fraction of the total number of weighted 

instances

Dr.B.Santhosh Kumar 188



 max_leaf_nodes : maximum number of leaf nodes.

 max_features : maximum number of features that are evaluated 

for splitting at each node.

 Increasing min_* hyperparameters or reducing max_* 

hyperparameters will regularize the model.
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Regression
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Ensemble Learning and Random 

Forests

 If you aggregate the predictions of a group of predictors such as
classifiers or regressors, you will often get better predictions than
with the best individual predictor.

 A group of predictors is called an ensemble, thus, this technique is
called Ensemble Learning, and an Ensemble Learning algorithm is

called an Ensemble method.

 For example, you can train a group of Decision Tree classifiers,
each on a different random subset of the training set. To make
predictions, you just obtain the predictions of all individual
trees, then predict the class that gets the most votes. Such an
ensemble of Decision Trees is called a Random Forest
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Voting Classifiers
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 A very simple way to create an even better classifier is to

aggregate the predictions of each classifier and predict the

class that gets the most votes. This majority-vote classifier

is called a hard voting classifier.
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 If all classifiers are able to estimate class probabilities (i.e., they

have a predict_proba() method), then you can tell Scikit-Learn

to predict the class with the highest class probability, averaged

over all the individual classifiers.

 This is called soft voting. It often achieves higher performance than

hard voting because it gives more weight to highly confident

votes.

 All you need to do is replace voting="hard" with

voting="soft" and ensure that all classifiers can estimate class

probabilities.
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Bagging and Pasting

 The approach of using the same training algorithm for every

predictor, but to train them on different random subsets of

the training set where the sampling is performed with

replacement is called Bagging.

 If the sampling is performed without replacement it is called

Pasting.
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Bagging and Pasting in Scikit-Learn

 Scikit-Learn offers a simple API for both bagging and pasting with

the BaggingClassifier class (or BaggingRegressor for regression).

 The following code trains an ensemble of 500 Decision Tree

classifiers each trained on 100 training instances randomly

sampled from the training set with replacement (this is an

example of bagging, but if you want to use pasting instead, just

set bootstrap=False).

 The n_jobs parameter tells Scikit-Learn the number of CPU

cores to use for training and predictions (–1 tells Scikit-Learn to

use all available cores)
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Out-of-Bag Evaluation

 With bagging, some instances may be sampled several times

for any given predictor, while others may not be sampled at all.

 By default a BaggingClassifier samples m training instances

with replacement (bootstrap=True), where m is the size of the

training set.

 This means that only about 63% of the training instances are

sampled on average for each predictor. The remaining 37% of

the training instances that are not sampled are called out-of-

bag (oob) instances.
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 The oob decision function for each training instance is also

available through the oob_decision_function_ variable. In this

case the decision function returns the class probabilities for

each training instance.

 For example, the oob evaluation estimates that the second

training instance has a 60.6% probability of belonging to the

positive class (and 39.4% of belonging to the negative class)

Dr.B.Santhosh Kumar 202



Random Patches and Random Subspaces

 The BaggingClassifier class supports sampling the features as
well. This is controlled by two hyperparameters: max_features
and bootstrap_features.

 They work the same way as max_samples and bootstrap, but
for feature sampling instead of instance sampling.

 Thus, each predictor will be trained on a random subset of the
input features.

 This is particularly useful when you are dealing with high-
dimensional inputs (such as images).

 Sampling both training instances and features is called the
Random Patches method. Keeping all training instances (i.e.,
bootstrap=False and max_samples=1.0) but sampling features
(i.e.,bootstrap_features=True and/or max_features smaller
than 1.0) is called the Random Subspaces method.
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Random Forests

 A Random Forest is an ensemble of Decision Trees, generally

trained via the bagging method (or sometimes pasting)

 Instead of building a BaggingClassifier and passing it a

DecisionTreeClassifier, you can instead use the

RandomForestClassifier class, which is more convenient and

optimized for Decision Trees.

 The following code trains a Random Forest classifier with 500

trees (each limited to maximum 16 nodes), using all available

CPU cores
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Dimensionality Reduction

 Many Machine Learning problems involve thousands or even

millions of features for each training instance which makes

training extremely slow and can also make it much harder to

find a good solution.

 This problem is often referred to as the curse of dimensionality.

 For example, consider the MNIST images the pixels on the

image borders are almost always white, so you could

completely drop these pixels from the training set without

losing much information.
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Main Approaches for Dimensionality 

Reduction

 Projection : 
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 Notice that all training instances lie close to a plane: this is a

lower-dimensional (2D) subspace of the high-dimensional

(3D) space.

 Now if we project every training instance perpendicularly

onto this subspace (as represented by the short lines

connecting the instances to the plane), we get the new 2D

dataset shown in Figure 8-3.

 We have just reduced the dataset’s dimensionality from 3D to

2D. Note that the axes correspond to new features z1 and z2

(the coordinates of the projections on the plane).
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 However, projection is not always the best approach to

dimensionality reduction. In many cases the subspace may

twist and turn, such as in the famous Swiss roll toy dataset

represented in Figure 8-4.
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Manifold Learning
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PCA
 Principal Component Analysis (PCA) is by far the most popular

dimensionality reduction algorithm. First it identifies the hyperplane
that lies closest to the data, and then it projects the data onto it.

 Before you can project the training set onto a lower-dimensional
hyperplane, you first need to choose the right hyperplane.

 For example, a simple 2D dataset is represented on the left of
Figure 8-7, along with three different axes (i.e., one-dimensional
hyperplanes). On the right is the result of the projection of the
dataset onto each of these axes.

 As you can see, the projection onto the solid line preserves the
maximum variance, while the projection onto the dotted line
preserves very little variance, and the projection onto the dashed
line preserves an intermediate amount of variance

Dr.B.Santhosh Kumar 212



Dr.B.Santhosh Kumar 213



Principal Components

 PCA identifies the axis that accounts for the largest amount

of variance in the training set.

 In Figure 8-7, it is the solid line. It also finds a second axis,

orthogonal to the first one, that accounts for the largest

amount of remaining variance.

 In this 2D example there is no choice: it is the dotted line. If it

were a higher-dimensional dataset, PCA would also find a

third axis, orthogonal to both previous axes, and a fourth, a

fifth, and so on—as many axes as the number of dimensions in

the dataset.
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 The unit vector that defines the ith axis is called the ith

principal component (PC). In Figure the 1st PC is c1 and the 2nd

PC is c2.

 There is a standard matrix factorization technique called

Singular Value Decomposition (SVD) that can decompose the

training set matrix X into the dot product of three matrices

U ・ Σ ・ VT, where VT contains all the principal components that

we are looking for, as shown in Equation 8-1.
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Projecting Down to d Dimensions

 Once you have identified all the principal components, you can

reduce the dimensionality of the dataset down to d dimensions

by projecting it onto the hyperplane defined by the first d

principal components.

 Selecting this hyperplane ensures that the projection will

preserve as much variance as possible.

 To project the training set onto the hyperplane, you can

simply compute the dot product of the training set matrix X

by the matrix Wd, defined as the matrix containing the first d

principal components.
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Using Scikit-Learn
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Explained Variance Ratio

 Another very useful piece of information is the explained

variance ratio of each principal component, available via the

explained_variance_ratio_ variable.

 It indicates the proportion of the dataset’s variance that lies

along the axis of each principal component.

Dr.B.Santhosh Kumar 220



Choosing the Right Number of Dimensions

 Instead of arbitrarily choosing the number of dimensions to

reduce down to, it is generally preferable to choose the

number of dimensions that add up to a sufficiently large

portion of the variance (e.g., 95%)

 The following code computes PCA without reducing

dimensionality, then computes the minimum number of

dimensions required to preserve 95% of the training set’s

variance:
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 However, there is a much better option: instead of specifying

the number of principal components you want to preserve,

you can set n_components to be a float between 0.0 and 1.0,

indicating the ratio of variance you wish to preserve:
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PCA for Compression

 Obviously after dimensionality reduction, the training set takes up
much less space. For example, try applying PCA to the MNIST
dataset while preserving 95% of its variance.

 You should find that each instance will have just over 150 features,
instead of the original 784 features. So while most of the variance is
preserved, the dataset is now less than 20% of its original size.

 It is also possible to decompress the reduced dataset back to 784
dimensions by applying the inverse transformation of the PCA
projection. Of course this won’t give you back the original data but
it will likely be quite close to the original data.

 The mean squared distance between the original data and the
reconstructed data (compressed and then decompressed) is called
the reconstruction error.
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Incremental PCA

 One problem with the implementation of PCA is that it
requires the whole training set to fit in memory in order for
the SVD algorithm to run.

 Incremental PCA (IPCA) algorithms have been developed to split
the training set into mini-batches and feed an IPCA algorithm
one mini-batch at a time.

 This is useful for large training sets, and also to apply PCA
online.

 The following code splits the MNIST dataset into 100 mini-
batches (using NumPy’s array_split() function) and feeds them
to Scikit-Learn’s IncrementalPCA class to reduce the
dimensionality of the MNIST dataset down to 154
dimensions.

 Note that you must call the partial_fit() method with each
mini-batch rather than the fit() method with the whole
training set
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 Alternatively, you can use NumPy’s memmap class, which allows

you to manipulate a large array stored in a binary file on disk as

if it were entirely in memory .The class loads only the data it

needs in memory, when it needs it.

 Since the IncrementalPCA class uses only a small part of the

array at any given time, the memory usage remains under

control.
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Randomized PCA

 Scikit-Learn offers yet another option to perform PCA, called

Randomized PCA

 It is dramatically faster than the previous algorithms when d is 

much smaller.
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Kernel PCA

 The kernel trick can be applied to PCA, making it possible to

perform complex nonlinear projections for dimensionality

reduction.This is called Kernel PCA (kPCA)
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